
Status and Future 
Developments in Large 
Accelerator Control 
Systems

Karen S. White



ICAP October 2-6, 2006

In the Beginning

First accelerator control systems were 
hardwired arrays of dedicated hardware

No computers 

User interfaces

Knobs

Dials

Switches

Paper strip chart                                
recorders

Karl Brown at the klystron controls for the Mark II 
accelerator at Stanford University. ~1950

Photo from Symmetry August 2005



ICAP October 2-6, 2006

Then There Were Computers

By the early 1960’s, technology provided 
affordable digital stored program computers

Motivation for computer based control systems

Computing resources within reach

Success in industrial process control

Larger machines planned

Flexibility, expandability, efficiency

Desire for more sophisticated control



ICAP October 2-6, 2006

Early Computer Controls

1963 plans for Los Alamos Meson Physics 
Facility included computer controls

Technology

16-bit machine

8K words of memory

Assembler language

Custom OS and fieldbus

Color CRT with knobs

Database for device information



ICAP October 2-6, 2006

Evolution

By late 1960’s

Existing machines introducing computers into their 
control systems 

New machines planned with computer based control 
systems

Highly custom systems

Today

Accelerator operations depend on sophisticated 
computer based controls with lots of commercial 
components



ICAP October 2-6, 2006

Control System Architecture

Client Tier

Services Tier

Device Tier

User Interfaces
Control Panels

Graphs

Applications
Database
Archiver
Model

Automation
Setup

Machine Control
Feedback Loops

Device
Communication

Services
Database
Archiver
Model

Device
Control

Feedback
Loops



ICAP October 2-6, 2006

Control System Communication

Volume of data has grown

Data is more complex – includes attributes

Communication models have evolved

From inefficient, not synchronized models

To efficient, synchronized models

Further efficiencies

Send on change

Deadbands

Gateways



ICAP October 2-6, 2006

Trends

Moving away from custom solutions

Software Sharing/Reuse – most for device 
control and communications

Toolkits – EPICS (APS, JLab, SNS, others)

Frameworks – TANGO (ESRF, Soleil, others)

Commercial SCADA – (DESY, LHC, others)

Limited success for high level applications



ICAP October 2-6, 2006

Trends

Highly Distributed – moving towards embedded 
processors and network attached devices 

Automation Increasing

HMI

Animated graphics

Large number of monitors, wall displays

Data overload



ICAP October 2-6, 2006

Modern Control Room

Jefferson Lab CEBAF Control Room 2005



ICAP October 2-6, 2006

Data Management

Lots of room for improvement

Some systems static data is distributed 
amongst the front end processors

Some systems provide central DB for 
limited set of static data

Effectiveness highly dependent on 
application use



ICAP October 2-6, 2006

What Next?

Future machines will be bigger

10x more devices

100x more front end processors (one per 
device)

Larger geographic area 

Large data stores

Greater need for automation



ICAP October 2-6, 2006

Technology

New machines require more network 
bandwidth, storage capacity

Technology is still evolving very rapidly

Should be decided later in project

Scientists and engineers have proven 
ability to incorporate new technologies to 
scale for larger systems



ICAP October 2-6, 2006

Other Challenges

Global Project

Reliability

Maintainability

Operability



ICAP October 2-6, 2006

Global Project

Cost of future large machines implies a greater degree of 
global funding, development, maintenance and 
operations

Cost considerations may drive outsourcing of large 
subsystems

Implies networked operation which requires high level of 
security

In order to succeed
Well defined, enforced nomenclature, standards and interfaces, 
including development processes, from the beginning

Need better communication



ICAP October 2-6, 2006

Reliability

Effect of 10x more device on MTBF

Need to increase reliability

High availability components 

Redundancy for key components

Reduce time to repair - dominated by time to diagnose

Design systems with uniform, built-in diagnostics reported to 
control system

Control system needs to know every device is ready and 
operable

Good SW engineering practices including extensive 
testing



ICAP October 2-6, 2006

Software Maintainability

Biggest maintenance challenge is configuration control

Software must “discover” the machine configuration from central 
data repository and automatically adapt to changes

Depends on cooperation of all groups and use by all applications

Difficult to identify dependencies to evaluate impact of a 
change

Much better to get it correct in the beginning by rigorous 
use of requirements, reviews and testing

Cost of fixing bugs is high compared to using good 
software engineering practices



ICAP October 2-6, 2006

Software Engineering Process is Important:
Reliability and Maintainability

Compiled from multiple studies by Barry Boehm, USC and Victor Basili, U. of Maryland

Finding and fixing a software problem after delivery is often 100 times more expensive 
than finding and fixing it during the requirements and design phase. 

About 40-50% of the effort on current software projects is spent on avoidable rework. 
About 80% of the avoidable rework comes from 20% of the defects.
About 80% of the defects come from 20% of the modules and about half the modules are 
defect free. 

About 90% of the downtime comes from at most 10% of the defects.
Peer reviews catch 60% of the defects. 
Perspective-based reviews catch 35% more defects than non-directed reviews. 

Disciplined personal practices can reduce defect introduction rates by up to 75%. 
All other things being equal, it costs 50% more per source instruction to develop high-
dependability software products than to develop low-dependability software products. 
However, the investment is more than worth it if significant operations and maintenance 
costs are involved. 
About 40-50% of user programs enter use with nontrivial defects. 

Source http://www.cebase.org/www/AboutCebase/News/top-10-defects.html
CeBase = NSF Center for Empirically Based Software Engineering



ICAP October 2-6, 2006

Operability

Control systems moving towards a higher degree 
of automation – requires better modeling

Complete automation of setup and operations 
needed for very large machines

Controls interfaces more for status and 
information than for control

Need consistently enforced standards for data 
presentation and GUI behavior

Need to present information (rather than data) in 
useful context



ICAP October 2-6, 2006

Operability - Alarms

Significant work remains to create useful 
alarm systems that only show conditions 
that operators need to know about, when 
they matter

More a matter of thoughtful definitions 
than improved tools



ICAP October 2-6, 2006

Operability - Archiving

Increasing requirements for huge amounts of 
data to be stored indefinitely

Follow’s the Technician’s Corollary to Parkinson’s 
Law

No matter how big the data storage medium, it will soon be 
filled. 

Need better means to access and analyze 
logged data

Need to think about what is really needed, how 
often and for how long



ICAP October 2-6, 2006

Summary

Meeting the challenges for future systems enabled by 

initial adoption of

Project-wide standards 

Rigorous engineering development processes

Consistent use of a central repository for machine configuration

data

Biggest challenge - getting a large number of people to do 

things the same way!


