Author: Loulergue, A.
Paper Title Page
MOP2WB03
Baseline Lattice for the Upgrade of SOLEIL  
 
  • A. Loulergue, P. Brunelle, A. Nadji, L.S. Nadolski, R. Nagaoka, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Previous MBA studies converged to a lattice composed of 7BA-6BA with a natural emittance value of 200-250 pm·rad range. Due to the difficulties of non-linear optimization in targeting lower emittance values, a decision was made to symmetrize totally the ring with 20 identical cells having long free straight sections longer than 4 m. A 7BA solution elaborated by adopting the sextupole paring scheme with dispersion bumps originally developed at the ESRF-EBS, including reverse-bends, enabling an emittance of 72 pm·rad has been defined as the baseline lattice. The sufficient on-momentum dynamic aperture obtained allows to consider off-axis injection. The linear and nonlinear dynamic properties of the lattice along with the expected performance in terms of brilliance and transverse coherence are presented. In particular, the beta functions tuned down to 1 m in both transverse planes at the center of straight sections allow matching diffraction limited photons up to 3 keV. In addition, a 9BA solution reaching 32 pm·rad and a novel longitudinal on-axis injection scheme involving rapidly decaying RF kicks developed at SOLEIL shall also be presented.  
slides icon Slides MOP2WB03 [4.432 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA2WC01 Transportation and Manipulation of a Laser Plasma Acceleration Beam 56
 
  • A. Ghaith, T. André, I.A. Andriyash, F. Blache, F. Bouvet, F. Briquez, M.-E. Couprie, Y. Dietrich, J.P. Duval, C. Herbeaux, N. Hubert, C.A. Kitegi, M. Labat, N. Leclercq, A. Lestrade, A. Loulergue, O. Marcouillé, F. Marteau, D. Oumbarek, P. Rommeluère, E. Roussel, M. Sebdaoui, K.T. Tavakoli, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
  • S. Bielawski, C. Evain, C. Szwaj
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • S. Corde, J. Gautier, G. Lambert, B. Mahieu, V. Malka, K.T. Phuoc, C. Thaury
    LOA, Palaiseau, France
 
  Funding: European Research Council advanced grant COXINEL - 340015
The ERC Advanced Grant COXINEL aims at demonstrating free electron laser amplification, at a resonant wavelength of 200 nm, based on a laser plasma acceleration source. To achieve the amplification, a 10 m long dedicated transport line was designed to manipulate the beam qualities. It starts with a triplet of permanent magnet with tunable gradient quadrupoles (QUAPEVA) that handles the highly divergent electron beam, a demixing chicane with a slit to reduce the energy spread per slice, and a set of electromagnetic quadrupoles to provide a chromatic focusing in a 2 m long cryogenic undulator. Electrons of energy 176 MeV were successfully transported throughout the line, where the beam positioning and dispersion were controlled efficiently thanks to a specific beam based alignment method, as well as the energy range by varying the slit width. Observations of undulator radiation for different undulator gaps are reported.
 
slides icon Slides TUA2WC01 [2.465 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FLS2018-TUA2WC01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2WD01 QUAPEVA: Variable High Gradient Permanent Magnet Quadrupole 89
 
  • C.A. Kitegi, T. André, M.-E. Couprie, A. Ghaith, J. Idam, A. Loulergue, F. Marteau, D. Oumbarek, M. Sebdaoui, M. Valléau, J. Vétéran
    SOLEIL, Gif-sur-Yvette, France
  • C. Benabderrahmane, J. Chavanne, G. Le Bec
    ESRF, Grenoble, France
  • O. Cosson, F. Forest, P. Jivkov, J.L. Lancelot
    Sigmaphi, Vannes, France
  • P. N'gotta
    MAX IV Laboratory, Lund University, Lund, Sweden
  • C. Vallerand
    LAL, Orsay, France
 
  We present the magnetic and the mechanical design of tunable high gradient permanent magnet (PM) quadrupoles. The tunable gradient of the so-called QUAPEVAS extends from 100T/m up to 200T/m. Seven of them with various lengths, ranging from 26mm up to 100mm, for different integrated quadrupole strengths were manufactured. The measured magnetic performance of these devices is also reported. These devices were successfully developed to transport laser plasma accelerated electron beam. Such applications have however less stringent multipole harmonic content constraints than diffraction limited Light sources. Trails for lowering the multipole harmonics will be discussed.  
slides icon Slides WEA2WD01 [3.093 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FLS2018-WEA2WD01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)