Author: Seletskiy, S.
Paper Title Page
MOPAM2R1 Accelerator Physics Requirements for Electron Cooler at the EIC Injection Energy 1
 
  • A.V. Fedotov, D. Kayran, S. Seletskiy
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
An electron cooler using RF-accelerated electron beam is presently under design to provide required cooling of protons at the EIC injection energy of 24 GeV. In this paper, we describe accelerator physics requirements and design considerations of such 13 MeV electron cooler, including associated challenges.
 
slides icon Slides MOPAM2R1 [2.281 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-COOL2023-MOPAM2R1  
About • Received ※ 20 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 04 November 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAM1R2
Studies of Ion Beam Heating in LEReC  
 
  • S. Seletskiy, A.V. Fedotov, D. Kayran
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Electron beam created by either electron coolers or electron lenses in an ion storage ring can cause an unwanted emittance growth (heating) of the ion bunches. In this paper we report experimental studies of the electron-ion heating at the Low Energy RHIC electron Cooler (LEReC).
 
slides icon Slides TUPAM1R2 [2.461 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAM1R1
Parameters Optimization for EIC Ring Cooler  
 
  • S. Seletskiy, A.V. Fedotov, J. Kewisch
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
One of the options considered for cooling of protons at top energy in the Electron Ion Collider (EIC) is the Ring Electron Cooler. In this paper we discuss optimization of the Ring Cooler parameters considering the self-space charge effect, the effect of proton-electron focusing in a cooling section (CS), as well as the effects of beam-beam scattering in the CS and the electrons’ intra-beam scattering in the storage ring.
 
slides icon Slides WEPAM1R1 [4.414 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAM1R2
Advances and Challenges in Coherent Electron Cooling Experiment at RHIC  
 
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • J.C. Brutus, D. Chan, A.J. Curcio, L. DeSanto, K. Decker, A. Di Lieto, K.A. Drees, R.L. Hulsart, M. Ilardo, P. Inacker, Y.C. Jing, D. Kayran, J. Ma, G.J. Mahler, R.J. Michnoff, G. Narayan, L.K. Nguyen, M.C. Paniccia, W.E. Pekrul, I. Petrushina, I. Pinayev, M.P. Sangroula, S. Seletskiy, F. Severino, K. Shih, J. Skaritka, L. Smart, Z. Sorrell, A. Sukhanov, R. Than, G. Wang, D. Weiss, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886.
We discuss current advances and remaining challenges in demonstrating Coherent electron Cooling for 26.5 GeV/u ion beam circulating in Relativistic Heavy Ion Colder, RHIC. Since 2020, the CeC experiment utilizes a 4-cell Plasma Cascade micro-bunching Amplifier (PCA) with bandwidth of 20 THz. We report on results obtained during CeC last four years of CeC experiment, including measurements of ion imprint in electron beam, demonstration of high PCA gain and observation of recombination of electrons and Au ions. While we were unable to clearly established CeC cooling, we clearly observed weak regular electron cooling of 26.5 GeV/u ions - the record energy for electron cooling. We discuss challenges experienced during last runs, improvements to the CeC X system and our plans for demonstration of CeC cooling in near future.
 
slides icon Slides WEPAM1R2 [6.149 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAM2R2
Design to Achieve Uniform Electron Beam in Coherent Electron Cooling  
 
  • Y.C. Jing, A.V. Fedotov, D. Kayran, V. Litvinenko, J. Ma, I. Petrushina, I. Pinayev, S. Seletskiy, K. Shih, G. Wang
    BNL, Upton, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  The Coherent electron Cooling (CeC) proof of principle experiment requires a high quality electron beam with uniform temporal profile in the cooling section for optimized cooling performance. Due to the nature of strong ballistic compression in the CeC accelerator, a regular initial laser distribution fails to generate such uniform electron beam. Wide choices of initial laser profile with unconventional beam distributions have been studied in simulation. In this paper, we present our findings to possible solution(s) in achieving the uniform electron beam for cooling experiments.  
slides icon Slides THPAM2R2 [3.888 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOSRP04 Explicit Expressions for Non-Magnetized Bunched Electron Cooling 58
 
  • S. Seletskiy, A.V. Fedotov
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Recent success of Low Energy RHIC Electron Cooler (LEReC) leads the way in development of high energy electron coolers based on non-magnetized electron bunches accelerated by RF cavities. In this paper we derive explicit formulas for the friction force and the cooling rates in non-magnetized electron coolers in the presence of redistribution of cooling decrements. We further consider several particular cases reducing the general expressions to simple analytic formulas useful for optimization of coolers’ parameters.
 
poster icon Poster THPOSRP04 [3.047 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-COOL2023-THPOSRP04  
About • Received ※ 20 October 2023 — Revised ※ 28 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 02 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)