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Abstract

Recent success of Low Energy RHIC Electron Cooler
(LEReC) leads the way in development of high energy
electron coolers based on non-magnetized -electron
bunches accelerated by RF cavities. In this paper we derive
explicit formulas for the friction force and the cooling rates
in non-magnetized electron coolers in the presence of re-
distribution of cooling decrements. We further consider
several particular cases reducing the general expressions to
simple analytic formulas useful for optimization of coolers’
parameters.

INTRODUCTION

Redistribution of cooling between longitudinal and
transverse directions [1] requires two conditions. The first
one is a coupling between the longitudinal and transverse
(in this paper we will consider the horizontal one) motion
of an ion. This is created by the ions' dispersion in the cool-
ing section (CS). The second condition is dependence of
the longitudinal friction force on the horizontal position of
an ion in the cooling section, i.e. the longitudinal compo-
nent of the cooling force must have the transverse gradient.
A robust way to create the required gradient (which will be
the focus of this paper) is to introduce the electron beam
dispersion in the CS.

In the following section we will derive the explicit ex-
pressions for the dynamical friction force in the presence
of electron dispersion. Next, we will show how introduc-
tion of ion dispersion results in x — z redistribution of the
cooling rates. Finally, we will apply the obtained formulas
to several “asymptotic” cases.

DYNAMICAL FRICTION FORCE

The general expression for the dynamical friction force
in non-magnetized cooling is:
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where N, is the number of electrons per bunch, e and m,
are an electron’s charge and mass, Z; is an ion’s charge
number, v, and v; are electron and ion velocities, A is a
Coulomb logarithm, which is a weak function of velocity
and can be taken out of integral, and f, (7., v,) is the elec-
trons 6-D distribution function.

Assuming Gaussian electron distribution, in the presence
of electron dispersion (D,) in the cooling section and using
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x — D,é8, for horizontal electron coordinate (here &, =
%), one can write f, in the form f, = p,f,,., where
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Now, we can rewrite Eq. (1) as:
oo U —Te 3
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where C, = ~ Ac. We further introduce an effective

potential in the velocity-space:

U= Cope f |171ff7e| (5)

Noticing that components of the friction force can be
presented by F, ,, , = 0U/0Vy;y; ,;, one can reduce Eq. (4)
to 1-D integrals [2, 3]. For the sake of clarity, we will con-
sider the case of 0,5, = 0y, = 0, (for detailed deriva-
tions and more general cases see [2-4]).

After some algebraic manipulations we get Binney’s for-
mulas [5] for friction force components:
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where C; = 2V2nN,r2m,c*Z} ..
To simplify final expressions we will further consider an

approximation of small amplitudes (v; < a,,). Then, one
can analytically take integrals in Eq. (6). Switching to la-
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boratory frame values o5, = Z2¢ and gy, = 22, we get:
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ter K = fic ﬁ. The function @ is given by:
e
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The plot in Fig. 1 shows that ® is a rather strong function
of the ratio of electrons effective longitudinal and trans-
verse velocity spreads in the range most relevant to
bunched electron cooling.
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Figure 1: Function ®.

COOLING REDISTRIBUTION

It follows from Egs. (7) and (8) that on a single pass
through the cooling section changes in an ion’s angle (Ax;")
and relative momentum (Ad;) are given by:

Ax; = copehxics® ( . l)
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where ¢, = V2pamy BC’ L is the length of the cool

ing section, A; is an ion’s atomic number and
Xics» Xics» Oics are ion’s position, angle and relative mo-
mentum in the cooling section.

Denoting ion’s parameters upstream and downstream of
the cooling section with indexes 0 and 1 respectively and
noticing that x;cs = x;9 + D;6;0 and x;; = x;c5 — D; (839 +
AS;), we get Ax; = —D;AS;. Combining this with Eq. (9)
we obtain:
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where the electrons density “probed” by an ion is:
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We introduce horizontal and longitudinal actions of an
ion, assuming that in the CS a,, = 0:
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The change in actions on a single pass through the CS is:
Ay ~ T8 4 By Ax
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Finally, the change of i-bunch emittances over a single
pass through the cooling section can be found as:

Ney = [T [ fi,dx; ..dS
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We assume the 6-D Gaussian distribution of ions:
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Noticing that the cooling rate is A = Tl %, where T,

rev
is a revolution period in the ion storage ring, we get from

Egs. (10)-(15):
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where duty factor 1 = L¢g/Cring and Cppg is the storage
ring circumference.

Equations (16) give the explicit expressions for redistri-
bution of cooling rates between longitudinal and horizontal
direction in presence of electron and ion dispersions in the
cooling section. The equations take into account nonuni-
formity of e-bunch density distribution. Therefore, even
with D, = 0 some redistribution is present (non-zero term
D?a; in the numerator of the redistribution coefficient in
the two first equations).

It is important to stress that coefficients ¢, and c, are
themselves functions of D,. Hence, generally speaking,
one cannot simply calculate the “undisturbed” cooling
rates (A,q, A50) and plug them into simple redistribution
equations of the form A, = A,y +1,; A, = A0 — T44.
To the best of our knowledge, this fact was ignored in the
previous works dedicated to studies of cooling redistribu-
tion.
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SPECIAL CASES
Absence of Redistribution (D, = D; = 0)

We first consider the simplest case of D, =D; =0,
which allows us to compare the derived formulas to two
well-known asymptotic cases. Zeroing the terms contain-
ing dispersion in the friction force equation (7) and using
the peak electron density in the beam frame n,, we get:

Fey = —2V2n,72mec* 220 222 & ("—)
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For the case of spherically symmetric velocity distribu-
tion (G50 = Oy = 0ye) P(1) = 2/3 and we get:
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For the case of 0,,, < 0,,., Which is typical for the
coolers utilizing DC electron beam, ‘liin(l) o(d) = nz—d. Then,

from Eq. (17) we get:
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Both equations (18) and (19) coincide with the expres-
sions derived in [1].

Zero Electron Dispersion (D, = 0)

For the case of D, = 0 the redistribution is caused by a
nonuniformity of the electron density only (as was dis-
cussed above), and Eq. (16) becomes:
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Redistribution formulas similar to Eq. (20) were first de-

rived in [6], although, without specifying the explicit ex-
pressions for ¢,q, C,-

Uniform Electron Density

The case of a uniform electron density can be obtained
from Eq. (16) by assuming 62 + D?0%; < 0% + D%o},,
Oy; K Oye, 0y K 0ge. Then, we get:

THPOSRPO4
60

(0012023, Montreux, Switzerland
ISSN: 2226-0374

JACoW Publishing
doi:10.18429/JACoW-C0O0L2023-THPOSRPO4

2
DiDeo,
Ay = My + —pioeThe
X x1 0§e+DgU§e z1
2
1=, — DiDeos,
z — tz1 z1
02e+D20},
— Ose Ox
A1 =@ e T
be |o2,+D¢03, 21)
o o
My =20, |1- @ 2o
2
Y%6e 0Zc+D30},
NerdZZmecAcn
1

- ny4ﬁ3Aimp0'eryeUzeage‘75e

The first two formulas in Eq. (21) are well-known (see
[1, 7] for example). Yet, the previous works ignored de-
pendence of 4., and 1,; on D,, which is important for ac-
curate calculation of the redistributed cooling rates.

CONCLUSION

We derived explicit formulas (Eq. (16)) for redistribution
of the cooling rates in non-magnetized electron coolers.
The derived expressions take into account both the redis-
tribution due to electron and ion dispersions in the cooling
section and a nonuniform transverse density of the electron
bunch.

The derived equations show that introduction of electron
dispersion changes the cooling rates from their “unper-
turbed” values and that it is the “new”, “perturbed” rates
that get redistributed.

The equations shown in this paper allow for accurate cal-
culation of the redistributed cooling rates.
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