| Paper | Title | Other Keywords | Page |
|---|---|---|---|
| MOCNB03 | Residual Gas X-ray Beam Position Monitor for PETRA-III | undulator, radiation, electron, ion | 53 |
|
|||
A residual gas x-ray beam position monitor (RGXBPM) was developed for PETRA-III storage ring. This type of x-ray beam position monitors (XBMP) tend to overcome some deficiencies of the blade type XBPMs, which are currently employed at the third generation synchrotron facilities as "white" undulator beam XBPMs. While blade XBPMs provide micron-accuracy resolution, the signal depends on the undulator gap and is also affected by stray radiation from bending magnets and focusing optics. The residual gas XBPM detects position of the centre of gravity of the undulator radiation; it has no elements that are hit by the x-ray beam, and complies with the windowless concept of the PETRA-III beamlines. Residual gas beam profile monitors were first developed to provide beam profile measurements at charged particles accelerators. The spatial resolution of RGXBPM was substantially improved in order to comply with the requirements at the PETRA III storage ring. Due to limited space, a thorough electrostatic optimization of RGXBPM was needed to achieve required electrical field quality. Test results obtained at the ESRF and commissioning of the RGXBPMs at PETRA-III will be reported. |
|||
|
|||
| TUCNB02 | APS Beam Stability Studies at the 100-Nanoradian Level | feedback, pick-up, insertion, insertion-device | 74 |
|
|||
Recent developments at the Advanced Photon Source (APS) in high-resolution beam position monitoring for both the electron and the x-ray beams has provided an opportunity to study beam motion well below the measurement threshold of the standard suite of instrumentation used for orbit control. The APS diagnostics undulator beamline 35-ID has been configured to use a large variety of high-resolution beam position monitor (BPM) technologies. The source-point electron rf BPMs use commercially available Libera Brilliance electronics from Instrumentation Technologies, together with in-house-developed field-programmable gate array-based data acquisition digitizing broadband (10 MHz) amplitude-to-phase monopulse receivers. Photo-emission-based photon BPMs are deployed in the 35-ID front end at distances of 16 and 20 meters from the source, and a prototype x-ray fluorescence-based photon BPM is located at the end of the beamline, approximately 42 meters from the source. Detailed results describing AC noise and long-term drift performance studies will be provided. |
|||
|
|||
| TUCNB03 | Cherenkov Ring to Observe Longitudinal Phase Space of a Low Energy Electron Beam Extracted from RF Gun | electron, gun, radiation, space-charge | 79 |
|
|||
Generation of high brilliance beam using an RF gun is very attractive for advanced use of electron linacs. Beam dynamics in the RF gun has been studied theoretically so far, and many simulation codes have been developed. The stage in which the beam is extracted and accelerated to relativistic momentum is crucial for understanding of space charge dominated beams. In this sense, actual measurement of the beam phase space is highly desired to examine the validity of the simulation codes. However, for the low energy electrons, such measurement is difficult because the phase space is easily distorted due to space charge effect during travel through drift space. Accordingly, we have considered employing the energy dependent angular distribution of Cherenkov radiation. Though the emission angle of Cherenkov radiation decreases rapidly with increasing beam energy, it is still 25 deg/MeV at an energy around 2 MeV when we use a radiator that has a refractive index of 1.035. Thus the energy distribution can be measured by observing the Cherenkov ring with sufficient angular resolution. Since this method needs only a thin radiator, the drift space length can be minimized. |
|||
|
|||
| TUPSM005 | Gas Scintillation Beam Profile Monitor at COSY Jülich | vacuum, ion, radiation, synchrotron | 98 |
|
|||
The interaction of an ion beam with the residual gas might lead to a photon emission of the excited residual gas molecule. These photons can be used to monitor the beam profile. Therefore a multichannel photomultiplier is used together with an optical system. Measurements at the COSY synchrotron are presented. The usability of the method is discussed by comparing to measurements at the iThemba Labs beam line and the JESSICA experiment, a spallation source prearrangement at COSY. |
|||
| TUPSM020 | Beam Induced Fluorescence Monitor–Spectroscopy in Nitrogen, Helium, Argon, Krypton, and Xenon Gas | ion, diagnostics, cathode, vacuum | 156 |
|
|||
As conventional intercepting diagnostics will not withstand high intensity ion beams, Beam Induced Fluorescence (BIF) profile monitors constitute a preeminent alternative for non-intercepting profile measurements. This diagnostic technique makes use of optical emission of beam-excited gases. Recently BIF became an important diagnostic technique for beam profile measurement with applicability in beam tuning over a wide range of beams and accelerator conditions. Beam induced fluorescence spectra in the range of 300 - 800 nm were recorded with an imaging spectrograph for 5 MeV/u proton, S(6+) and Ta(24+) beams in nitrogen, Xe, Kr, Ar, Ne and He at 10-3 mbar gas pressure. Optical transitions were identified and associated with corresponding beam profiles. Effective light yields, normalized to the differential energy loss, are presented for all gas-species investigated. Since residual gas ionization is the basic process for BIF-monitors as well as for Ionization Profile Monitors (IPM), BIF-results are compared to IPM measurement data. |
|||
| TUPSM023 | Photon Beam Position Measurements by Libera Photon Using Copper Blade Sensors at Soleil Synchrotron | feedback, storage-ring, instrumentation, synchrotron | 160 |
|
|||
Libera Photon is the new Photon Beam Position Processor (PBPM) from the Instrumentation Technologies. First measurements on real beam have been done at SOLEIL Synchrotron. The module was connected to a PBPM installed on the DIFFABS bending magnet beam line. Three different beam position experiments were done: measurement of position at beam bump (± 500 μm), beam current dependence and filling pattern dependence. Measurements were done with internal BIAS voltage source set to -70 V. Measured current was in the range up to 250 μA on the sensor. Measurements were done on standard 100 kS/s, 10 kS/s and 10 S/s data flows with different bandwidths. The article discusses the results and consequential improvements of the device. |
|||
| TUPSM042 | Beam Measurements of a Large Solid-Angle Beam Loss Monitor in the APS | electron, radiation, beam-losses, undulator | 228 |
|
|||
For reliable radiation dosimetry of undulator magnets, a beam loss monitor (BLM) covering a large solid angle from the point of beam losses is highly desirable. A BLM that uses a Cherenkov radiator plate wrapping around the beam pipe is utilized in the Linac Coherent Light Source (LCLS) undulator systems, and a similar BLM geometry is currently being tested for the Advanced Photon Source (APS) undulators. We report on measurements made with large solid-angle BLMs recently installed in the APS storage ring (SR) and the booster-to-SR transfer line (BTS) to assess the following design and performance characteristics: (1) relative sensitivity of the Cherenkov detector as a function of the transverse position of electron entry into the quartz radiator; (2) signal intensity as a function of the detector distance from the nominal beam loss location at the undulator vacuum chamber entrance; and (3) the effect of incorporating different tungsten/lead enhancers upstream of the radiator. The measured data will be compared with numerical simulation of the beam loss processes. |
|||
| TUPSM043 | High-Power Hard X-ray Beam Position Monitor Development at the APS | undulator, diagnostics, electron, radiation | 233 |
|
|||
Accurate and stable x-ray beam position monitors (XBPMs) are key elements in a feedback system for obtaining desired x-ray beam stability. For the low-emittance mode of operation of the APS, the cross sections of the undulator x-ray beams are not upright ellipses, and the effective beam sizes in the horizontal and vertical planes depend on the undulator gaps. These beam characteristics introduce strong gap dependence in blade-type XBPMs designed for upright elliptical beams. A center-of-mass detector XBPM will significantly reduce the gap dependence of the BPM readings. We report the development status of a high-power center-of-mass XBPM at the APS. We note that users often discard more than 50% of the undulator beam power outside of the monochromatic beam. These photons can be intercepted by the limiting aperture of the beamline, and then the x-ray fluorescence footprint can be imaged onto a detector. The position of the x-ray beam can be read out using position-sensitive silicon photodiodes. Thermal analyses show that the XBPM can be used for the measurement of beam with a total power up to 20 kW for the 7-GeV / 200-mA operation of a 5-m undulator in the APS. |
|||
| TUPSM044 | Bunch-by-Bunch Diagnostics at the APS Using Time-Correlated Single-Photon Counting Techniques | storage-ring, electron, target, diagnostics | 238 |
|
|||
Time-correlated single-photon counting (TCSPC) techniques have been used for bunch purity measurement since the Advanced Photon Source started operations. Over the past three years, improvements made in the monitor have increased the signal-to-noise ratio and dynamic range to above 10 billion. Recently, improvements of the timing resolution of TCSPC to < 50 ps FWHM allowed us to measure the longitudinal profile of individual bunches in the APS storage ring. The profile monitor uses a visible-light single-photon avalanche photodiode (SPAD) and a PicoHarp 300 TCSPC unit. Due to its robustness, the system operates continuously and measures the average longitudinal profile of the stored beam, updating the process variables for bunch phases and bunch lengths in intervals less than 30 seconds. In a third application, using a TCSPC x-ray detector with an x-ray wire scanner in the monochromatic beam of the diagnostics undulator, measurements of transverse profiles of individual bunches can be completed in less than 30 minutes. Since the beam sizes and phases are dependent on the bunch charge, these online tools will provide users with valuable information performing timing experiments. |
|||
| TUPSM046 | Influence of Dark Count on the Performance of Silicon Photomultipliers | beam-losses, electron, laser, instrumentation | 247 |
|
|||
The introduction of Silicon Photomultipliers (SiPMs) as single photon sensitive detectors represents a promising alternative to traditional photomultiplier tubes. This is especially true in applications in which it is compulsory to attain magnetic field insensitivity, low photon flux detection, quantum efficiency in the blue region that is comparable to standard photomultipliers, high timing resolution, dimensions comparable to the dimensions of an optical fiber diameters, and low costs. The structure of the SiPM is based on an array of independent avalanche photodiodes (APDs) working in Geiger-mode at a low bias voltage with a high gain. The output signal is proportional to the number of pixels "fired" by impacting photons. The detection efficiency for state-of-the-art devices is in the order of 20% at 500 nm. In this contribution, the measured dark count rates of different SiPMs are compared and the influence of this noise on the real signal is presented. These results are then used to correct the photon count and determine the optimized working parameters for a future beam loss monitor at CTF3/CLIC. |
|||
|
|||
| TUPSM049 | Measurement, Simulation, and Suppression of APS Storage Ring Vacuum Chamber TE Modes Impacting Vertical BPM Readings | vacuum, simulation, resonance, storage-ring | 260 |
|
|||
The Advanced Photon Source (APS) storage ring rf beam position monitors (BPMs) are impacted by the presence of beam-excited transverse electric (TE) modes. These modes are excited in large-aperture vacuum chambers and become trapped between the bellow end flanges. The TE modes are vertically oriented and are superimposed on the TEM beam position signals, corrupting the BPM measurements. Erroneous step changes in beam position measurements and systematic intensity dependence in the vertical plane have been traced to these modes, placing a fundamental limitation on vertical beam position stabilization. Experiments were conducted suppressing these modes on a test vacuum chamber. These experiments were simulated with MAFIA and Microwave Studio, confirming experimental results. We will describe the measurements, simulations, and prototype test results. |
|||
| TUPSM050 | Studies of APS Storage Ring Vacuum Chamber Thermal Mechanical Effects and their Impact on Beam Stability | vacuum, insertion, insertion-device, laser | 265 |
|
|||
As the Advanced Photon Source (APS) prepares for a large-scale upgrade, many of the fundamental limitations on beam stability have to be identified. Studies have been conducted to measure thermal mechanical effects of both the water and air handling systems impacting insertion device vacuum chambers (IDVES). Mechanical stability of beam position monitor pickup electrodes mounted on these small-gap IDVES places a fundamental limitation on long-term x-ray beam stability for insertion device beamlines. Experiments have been conducted on an ID vacuum chamber indicating that the BPM blocks are moving with water temperature cycles at the level of 10 microns/degree C. Measurements and potential engineering solutions will be described. |
|||
| TUPSM060 | A Low Energy Ion Beam Pepper Pot Emittance Device | ion, electron, vacuum, emittance | 297 |
|
|||
The transverse emittance of the ion beam at the Heidelberg Ion Therapy Center (HIT) will be measured within the Low Energy Beam Transport (LEBT) using a pepper-pot measurement system. At HIT, two ECR sources produce ions (H, He, C and O) at an energy of 8keV/u with different beam currents from about 80 μA to 2mA. The functionality and components of the pepper-pot device is reviewed as well as the final design and the choice of the scintillator. For that, results from recent beam test at the Max Planck Institute für Kernphysik at Heidelberg are presented. The material investigation was focused on inorganic doped crystal, inorganic undoped crystal, borosilicate glass and quartz glass with the following characteristics: availability, prior use in beam diagnostics, radiation hardness, fast response, spectral matching to CCD detectors. |
|||
| TUPSM091 | Modeling the Optical Coupling Efficiency of the Linac Coherent Light Source Beam Loss Monitor Radiator | electron, coupling, simulation, undulator | 415 |
|
|||
A large-solid-angle Cherenkov detector beam loss monitor has been built and tested as part of the Linac Coherent Light Source machine protection system (MPS). The MPS is used to protect the undulator magnets from high-energy electron beam loss that can lead to demagnetization. Lost primaries create a shower of secondary electrons that transit through the radiator medium. The radiator consists of an Al-coated plate of high-purity, fused silica, formed into a tuning fork geometry that envelopes the beam pipe preceding each undulator. The radiator transports Cherenkov photons via internal reflection through a tapered neck into a compact photomultiplier tube (PMT). A simple model based on line sources summed across image planes is used to calculate the radiator optical coupling efficiency etac as a function of the electron's transverse position. The results are compared for the case of normally incident electrons with a more detailed Monte Carlo random-walk simulation called RIBO. Both analytical and numerical models show etac to be relatively uniform over the full range of transverse positions in the radiator and to be a strong function of surface reflectivity. |
|||
| TUPSM102 | Diagnostics Update of the Taiwan Light Source | feedback, controls, diagnostics, injection | 454 |
|
|||
Diagnostics of the 1.5 GeV Taiwan Light Source (TLS) has been continue upgraded since it operation started in 1993. BPM electronics and orbit feedback system have been upgrade in 2008. Commercial photon BPM electronics was tested recently. The bunch-by-bunch feedback have been deployed to improve beam stability. These upgrades are contributed to improve beam quality a lots. These efforts will be addressed also. |
|||
|