A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

insertion-device

Paper Title Other Keywords Page
TUCNB02 APS Beam Stability Studies at the 100-Nanoradian Level photon, feedback, pick-up, insertion 74
 
  • G. Decker, H. Bui, R.M. Lill, B.X. Yang
    ANL, Argonne
 
 

Recent developments at the Advanced Photon Source (APS) in high-resolution beam position monitoring for both the electron and the x-ray beams has provided an opportunity to study beam motion well below the measurement threshold of the standard suite of instrumentation used for orbit control. The APS diagnostics undulator beamline 35-ID has been configured to use a large variety of high-resolution beam position monitor (BPM) technologies. The source-point electron rf BPMs use commercially available Libera Brilliance electronics from Instrumentation Technologies, together with in-house-developed field-programmable gate array-based data acquisition digitizing broadband (10 MHz) amplitude-to-phase monopulse receivers. Photo-emission-based photon BPMs are deployed in the 35-ID front end at distances of 16 and 20 meters from the source, and a prototype x-ray fluorescence-based photon BPM is located at the end of the beamline, approximately 42 meters from the source. Detailed results describing AC noise and long-term drift performance studies will be provided.

 

slides icon

Slides

 
TUPSM034 Optimization of Small Aperture Beam Position Monitors for NSLS-II Project vacuum, impedance, insertion, multipole 199
 
  • I. Pinayev, A. Blednykh, B.N. Kosciuk, O. Singh
    BNL, Upton, Long Island, New York
 
 

The NSLS-II Light Source is being built at Brookhaven National Laboratory. It will provide users with ultimate brightness beam and the full realization of its capabilities requires corresponding stability of the beam orbit. The small aperture BPMs, located at the ends of a insertion device, will provide better sensitivity to the beam position but also requires thorough design. In this paper we present the results of the optimization including signal power levels and button heating.

 

poster icon

Poster

 
TUPSM050 Studies of APS Storage Ring Vacuum Chamber Thermal Mechanical Effects and their Impact on Beam Stability vacuum, insertion, photon, laser 265
 
  • R.M. Lill, J.T. Collins, G. Decker, L. Erwin, J.Z. Xu, B.X. Yang
    ANL, Argonne
 
 

As the Advanced Photon Source (APS) prepares for a large-scale upgrade, many of the fundamental limitations on beam stability have to be identified. Studies have been conducted to measure thermal mechanical effects of both the water and air handling systems impacting insertion device vacuum chambers (IDVES). Mechanical stability of beam position monitor pickup electrodes mounted on these small-gap IDVES places a fundamental limitation on long-term x-ray beam stability for insertion device beamlines. Experiments have been conducted on an ID vacuum chamber indicating that the BPM blocks are moving with water temperature cycles at the level of 10 microns/degree C. Measurements and potential engineering solutions will be described.