Editor's Note: PDF version of slides from Beam Instrumentation Workshop 2010, Santa Fe, NM

APS Beam Stability Studies at the 100-Nanoradian Level

Glenn Decker Advanced Photon Source Diagnostics May 4, 2010

Overview

- Beam stability goals
- Hardware systems description
 - Narrowband RF beam position monitors (BPMs)
 - Broadband RF BPM data acquisition system upgrade
 - Libera boxes
 - Photoemission BPMS
 - Hard x-ray fluorescence BPMs
- Experimental arrangement
- DC Results
- AC Results

Beam Stability Performance Goals

Typical goals for the APS Upgrade are

		AC Motion* (0.1-200 Hz)		Long term (1 week, pk-pk)	
Horizontal	Now	5.0 µm	0.85 µrad	7.0 µm	1.4 µrad
	Upgrade	3.0 µm	0.53 µrad	5.0 µm	1.0 µrad
Vertical	Now	1.6 µm	0.80 µrad	5.0 µm	2.5 µrad
	Upgrade	0.42 µm	0.22 µrad	1.0 µm	0.5 µrad

Commercial Bergoz Switched Receiver BPM

1 cm diameter capacitive buttons

APS Broadband RF BPM data acquisition upgrade

- Eight channels/board, 88 MS/sec sampling. Altera FPGA processing.
- One second (262144 samples) turnby-turn beam history for machine studies / fault diagnosis.
- Demonstrated noise floor
 - < 5 nm / √Hz
- Five sectors instrumented, parts for 3 more sectors in hand, more on the way.

State-of-the-art Commercial Solution

- Noise floor approaching 2 nm / \sqrt{Hz} .
- Long term drift 200 nm p-p / 24 hours*.
- APS has three

* Guenther Rehm, Diamond Light Source, EPAC 2008

BPM Pickup Electrodes for Libera and BSP-100

4 mm Diameter Capacitive buttons

BPM Electronics Performance

APS BSP-100 Module

Libera Brilliance@APS

Photoemission (UV) Photon BPMS

Gold-Coated Diamond Blades

Editor's Note: PDF version of slides from Beam Instrumentation WorkShop 2010, Santa Fe, NM

Photoemission Photon Beam Position Monitor Blade Signals vs. ID gap

APS Front-end hard x-ray beam position monitor development

- Extensive studies have taken place at the APS investigating copper x-ray fluorescence vs. photo-emission for photon beam position monitoring.
 - Photo-emission-based bpms have residual 10-20 micron systematic errors.
 - With X-ray fluorescence, soft bending magnet radiation background is essentially eliminated.
- An in-air prototype of an x-ray fluorescence-based hard x-ray bpm has been installed at APS diagnostics beamline 35-ID and is undergoing extensive testing.

Grazing-incidence Hard X-ray Fluorescence-Based Insertion Device X-ray Beam Position Monitor Conceptual Design (GRID-XBPM)

Glenn Decker APS, BIW 2010

Concept courtesy of Bingxin Yang

Power Density Profiles @ 30 m, APS Undulator A, 100 mA

Glenn Decker APS, BIW 2010

Courtesy of Roger Dejus

Prototype In-air GRID-XBPM @ 35-ID

Bingxin Yang

Four Pin diodes (Two sets, top and bottom)

Pinhole "camera" apertures

X-rays

Beam stop (PS2 surrogate) With pin diode monitoring X-ray transmission.

Editor's Note: PDF version of slides from Beam Instrumentation Workshop 2010, Santa Fe, NM

Hard X-ray Fluorescence Beam Position Monitor Photodiode Signals

Hard X-ray BPM Calibration*

* Detector rotated 90 degrees relative to initial design

Hard X-ray BPM Calibration Cont'd

Calibration Results

Channel	Beam Calibration Factor (mm)	Detector Calibration Factor (mm)	
S36ID:P1:x	0.8842	0.8305	
S36ID:P1:y	5.263	4.538	
"S36ID:P2:x" (really vert)	4.987	4.506	
S36ID:P2:y	5.490	4.506	
S35ID:P1:x	3.682	2.963	
S35ID:P1:y	1.059	0.1408*	
S35ID:P2:y	0.7843	0.1348*	

* Yes, really

APS 35-ID Undulator Beamline Experimental Arrangement

DC Performance

DC Performance Cont'd

AC Performance- Libera vs. Bergoz: Unfair Comparison

Libera vs. Bergoz: Less Unfair Comparison

Filtering

Filtering cont'd cont'd

Angle Power Spectral Densities

Summary

- An array of diagnostics have been deployed at APS beamline 35-ID allowing studies of angular motion with unprecedented resolution: 60 nanorad rms in a frequency band from 0.4 to 200 Hz.
- The development of a hard x-ray fluorescence-based BPM has played a pivotal role in this work and forms an important element of the APS Upgrade.
- This detector has been included in DC orbit correction for the first time, allowing very high resolution (and accuracy) steering based on stepping motors.

GRID-XBPM Assembly Drawing

Conceptual Design of the first article GRIDXBPM

Simulation Result (Preliminary) - Vertical

Temperature Distribution @ Case 4 (Max. 134.7 °C)

Stress Distribution @ Case 3 (Max. 218.3 MPa)

Courtesy of Soon-Hong Lee, AES-MED

Libera Brilliance / GRID-XBPM Comparison Vertical Comparison, Source to End of Beamline

