A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Pilat, F.C.

Paper Title Page
TUPLT012 Adjusting the IP Beta-functions in RHIC. 1156
 
  • W. Wittmer, F. Zimmermann
    CERN, Geneva
  • F.C. Pilat, V. Ptitsyn, J. Van Zeijts
    BNL, Upton, Long Island, New York
 
  The beta- functions at the IP can be adjusted without perturbation of other optics functions via several approaches. In this paper we describe a scheme based on a vector knob, which assigns fixed values to the different tuning quadrupoles and scales them by a common multiplier. The values for the knob vector were calculated for a lattice without any errors using MADX. Previous studies for the LHC have shown that this approach can meet the design goals. A specific feature of the RHIC lattice is the nested power supply system. To cope with the resulting problems a detailed response matrix analysis has been carried out and different sets of knobs were calculated and compared. The knobs are tested at RHIC during the 2004 run and preliminary results maybe discussed. Simultaneously a new approach to measure the beam sizes of both colliding beams at the IP, based on the tune ability provided by the knobs, was developed and tested.  
TUPLT182 Measuring Local Gradient and Skew Quadrupole Errors in RHIC IRs 1553
 
  • J.F. Cardona
    UNAL, Bogota D.C
  • S. Peggs, F.C. Pilat, V. Ptitsyn
    BNL, Upton, Long Island, New York
 
  The measurement of local linear errors at RHIC interaction regions using an "action and phase" analysis of difference orbits has already been presented [*]. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model.

* J. Cardona, S. Peggs, T. Satogata, F. Pilat and V. Ptitsyn,"Determination of Linear and Non Linear Components in RHIC Interaction Regions from difference Orbit Measurements", EPAC 2002, Paris, 2002, p.311-313.

 
TUPLT184 Operational Measurement of Coupling by Skew Quadrupole Modulation 1559
 
  • Y. Luo, P. Cameron, R. Lee, A. Marusic, F.C. Pilat, T. Roser, D. Trbojevic, J. Wei
    BNL, Upton, Long Island, New York
 
  The measurements of betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been recently developed and tested at RHIC. By modulating the current of different skew quadrupole families with different frequencies and measuring the resulting eigentunes response with a high resolution phase lock loop (PLL) system, it is possible to determine the projections of the residual coupling coefficients. We report the results of extensive beam studies carried on at RHIC injection, store energy and on the ramp. The capability of measuring coupling on the ramp opens the possibility of continuous coupling corrections during acceleration.  
TUPLT185 Principle of Skew Quadrupole Modulation to Measure Betatron Coupling 1562
 
  • Y. Luo, F.C. Pilat, T. Roser, D. Trbojevic, J. Wei
    BNL, Upton, Long Island, New York
 
  The idea of modulating Skew Qudrupoles to measure the ring betatron coupling was put forth by T. Roser. In this paper, analytical solutions for this technique is given. Simulation are also carried out based on RHIC. And other relevent issues concerning this technique's application are also discussed. All of them show this idea of modulating skew qudrupoles to measure the betatron coupling are applicable.  
WEPLT182 Non-linear Modeling of the RHIC Interaction Regions 2242
 
  • R. Tomas, W. Fischer, A.K. Jain, Y. Luo, F.C. Pilat
    BNL, Upton, Long Island, New York
 
  For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements on the MADX models of the Blue and the Yellow rings and their impact on beam stability.  
THPLT179 MADX-UAL Suite for Off-line Accelerator Design and Simulation 2870
 
  • N. Malitsky, R.P. Fliller III, F.C. Pilat, V. Ptitsyn, S. Tepikian, J. Wei
    BNL, Upton, Long Island, New York
  • F. Schmidt
    CERN, Geneva
  • R.M. Talman
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
 
  We present here an accelerator modeling suite that integrates the capability of MADX and UAL packages, based on the Standard eXchange Format (SXF) interface. The resulting environment introduces a one-stop collection of accelerator applications ranging from the lattice design to complex beam dynamics studies. The extended capabilities of the MADX-UAL integrated approach have been tested and effectively used in two accelerator projects: RHIC, where direct comparison of operational and simulated data is possible, and the SNS Accumulator Ring, still in its design phase.  
MOPLT165 Luminosity Increases in Gold-gold Operation in RHIC 917
 
  • W. Fischer, L. Ahrens, J. Alessi, M. Bai, D. Barton, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, D. Bruno, J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K.A. Drees, W. Fu, G. Ganetis, J. Glenn, T. Hayes, P. He, H.-C. Hseuh, H. Huang, P. Ingrassia, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, G. Marr, A. Marusic, R. Michnoff, C. Montag, J. Morris, T. Nicoletti, B. Oerter, C. Pearson, S. Peggs, A. Pendzick, F.C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, A. Sidi-Yekhlef, L. Smart, S. Tepikian, R. Tomas, D. Trbojevic, N. Tsoupas, J. Tuozzolo, J. Van Zeijts, K. Vetter, K. Yip, A. Zaltsman, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York
 
  After an exploratory phase, during which a number of beam parameters were varied, the RHIC experiments now demand high luminosity to study heavy ion collisions in detail. Presently RHIC operates routinely above its design luminosity. In the first 4 weeks of its current operating period (Run-4) the machine has delivered more integrated luminosity that during the 14 weeks of the last gold-gold operating period (Run-2). We give an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency.  
MOPLT167 RHIC Operation with Longitudinally Polarized Protons 920
 
  • H. Huang, M. Bai, J. Beebe-Wang, M. Blaskiewicz, J.M. Brennan, K.A. Drees, W. Fischer, A.U. Luccio, W.W. MacKay, C. Montag, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, S. Tepikian, D. Trbojevic, J. Van Zeijts, A.Y. Zelinsky, S.Y. Zhang
    BNL, Upton, Long Island, New York
 
  Longitudinally polarized proton beams have been accelerated, stored and collided at 100GeV in the Relativistic Heavy Ion Collider (RHIC) to study spin effects in the hadronic reactions. The essential equipment includes four Siberian snakes, eight spin rotators and a fast relative polarimeters in each of the two RHIC rings as well as local polarimeters at the STAR and PHENIX detectors. This paper summarizes the performance of RHIC as a polarized proton collider.  
MOPLT178 RHIC Pressure Rise 944
 
  • S.Y. Zhang, J. Alessi, M. Bai, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, R.P. Fliller III, D. Gassner, J. Gullotta, P. He, H.-C. Hseuh, H. Huang, U. Iriso, R. Lee, Y. Luo, W.W. MacKay, C. Montag, B. Oerter, S. Peggs, F.C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, L. Smart, P. Thieberger, D. Trbojevic, J. Van Zeijts, L. Wang, J. Wei, K. Zeno
    BNL, Upton, Long Island, New York
 
  Beam induced pressure rise remains an intensity limit at the RHIC for both heavy ion and polarized proton operations. The beam injection pressure rise at warm sections has been diagnosed due to electron cloud effect. In addition, pressure rise of heavy ion operation at the beam transition has caused experiment background problem in deuteron-gold run, and it is expected to take place in gold-gold run at high intensities. This type of pressure rise is related to beam momentum spread, and the electron cloud seems not dominant. Extensive approaches for both diagnosis and looking-for-remedies are undergoing in the current gold operation, RUN 4. Results of beam scrubbing, NEG pipe in RHIC ring, beam scraping test of ion desorption, beam momentum effect at the transition, beam gap effect, solenoid effect, and NEG pipe ion desorption test stand will be presented.