Keyword: GUI
Paper Title Other Keywords Page
TUPTB026 Measurements of High Values of Dielectric Permittivity Using Transmission Lines resonance, simulation, higher-order-mode, cavity 447
 
  • V.D. Shemelin, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: DOE
Usage of lossy materials is necessary for absorption of higher order modes excited in the RF cavities. Presently, measurements of lossy materials with usage of transmission lines give errors rapidly increasing with increase of the dielectric permittivity. A method is presented for measurements of high values of dielectric permittivity epsilon in a waveguide at high frequencies with lower errors. This method supplements the method of measurements evolved for low values of epsilon and is close to resonant methods, when a sample is placed into a cavity and the measurement is done at one only frequency. The new approach with use of Microwave Studio simulations makes possible to measure this value in several frequency points at one measurement.
 
poster icon Poster TUPTB026 [0.872 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB026  
About • Received ※ 20 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB043 Development of 3-Cell Traveling Wave SRF Cavity cavity, resonance, SRF, cryogenics 517
 
  • F. Furuta, T.N. Khabiboulline, K.E. McGee, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • P.V. Avrakhov, R.A. Kostin
    Euclid TechLabs, Solon, Ohio, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
Traveling wave SRF cavity is a new technology and requires a multi-stage process for development. Concep-tual designs have been proposed to adopt TW resonance in an SRF cavity The early stages of developments have been funded by several SBIR grants to Euclid Techlabs which were completed in collaboration with Fermilab. A 3-cell proof-of-principle TW cavity was fabricated as part of that and demonstrated the TW resonance excita-tion at room temperature. A TW resonance control tuner for the 3-cell was also fabricated and the preliminary tests were performed. Now, the 3-cell cavity is being processed and prepared for the first cryogenic testing.
 
poster icon Poster TUPTB043 [1.743 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB043  
About • Received ※ 17 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB068 EIC 197 MHz Crab Cavity RF Optimization cavity, HOM, multipactoring, impedance 584
 
  • Z. Li
    SLAC, Menlo Park, California, USA
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • Q. Wu, B.P. Xiao, W. Xu
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under U.S. DOE K No. DE-SC0012704, by Jefferson Science Associates, LLC under U.S. DOE K No. DE-SC0002769, and by DOE K No. DE-AC02-76SF00515.
Crab cavities, operating at 197 MHz and 394 MHz respectively, will be used to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point in the Electron Ion Collider (EIC). Both crab cavities are of the RF Dipole (RFD) shape. To meet the machine design requirements, there are a few important cavity design considerations that need to be addressed. First, to achieve stable cavity operation at the design voltages, cavity geometry details must be optimized to suppress potential multipacting. Incorporating strong HOM damping in the cavity design is required for the beam stability and quality. Furthermore, due to the finite pole width, the multipole fields, especially the sextupole and the decapole terms, need to be minimized to maintain an acceptable beam dynamic aperture. This paper will present the RF optimization details of the 197 MHz cavity.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB068  
About • Received ※ 16 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 03 July 2023 — Issue date ※ 08 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB051 Development of a Prototype 197 MHz Crab Cavity for the Electron-Ion Collider at JLab cavity, niobium, HOM, electron 685
 
  • N.A. Huque, E.F. Daly, E. Drachuk, J. Henry, M. Marchlik
    JLab, Newport News, Virginia, USA
  • A. Castilla
    JLAB, Newport News, USA
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
  • B.P. Xiao
    BNL, Upton, New York, USA
 
  Thomas Jefferson National Accelerator Facility (JLab) is currently developing a prototype 197 MHz Radio-Frequency Dipole (RFD) crab cavity as part of the Electron-Ion Collider (EIC) to be built at Brookhaven National Laboratory (BNL). Cryomodules containing these cavities will be part of Hadron Storage Ring (HSR) of the EIC. The prototype cavity is constructed primarily of formed niobium sheets of thickness 4.17 mm, with machined niobium parts used as interfaces where tight tolerancing is required. The cavity¿s large size and complex features present a number of challenges in fabrication, tuning, and RF testing. Structural and forming analyses have been carried out to optimize the design and fabricated processes. An overview of the design phase and the current state of fabrication are presented in this paper.
Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB051  
About • Received ※ 17 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB087 Copper Plating Qualification Process for the Fundamental Power Coupler Waveguides for CEBAF Cryomodules cryomodule, SRF, cavity, operation 790
 
  • L. Zhao, G. Cheng, G. Ciovati, K.M. Wilson
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC, supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
To provide sufficient energy for CEBAF operation, cryomodules and components are being refurbished yearly as necessary. Copper plated fundamental power coupler waveguides are important components of the cryomodules. The integrity and quality of copper plating is critical to reduce the heat load from the waveguides into the He bath at 2.07 K. A search of copper plating resources is underway for plating or re-plating CEBAF-style waveguides. This effort ensures a continuous capability of copper plating on cryomodule components, especially on waveguides. To qualify plating vendors, the waveguide copper plating specifications were revisited, and a thorough plating evaluation process is being developed. The evaluation process ranges from coupon testing to sample waveguide qualification. Recent results are summarized and future work is planned.
 
poster icon Poster WEPWB087 [1.582 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB087  
About • Received ※ 15 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 11 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB089 Theoretical Model of External Q Tuning for an SRF Cavity with Waveguide Tuner cavity, SRF, operation, electron 794
 
  • W. Xu, Z.A. Conway, K.S. Smith, A. Zaltsman
    BNL, Upton, New York, USA
  • E.F. Daly, J. Guo, R.A. Rimmer
    JLab, Newport News, Virginia, USA
 
  Funding: The work is supported by by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
A wide range of electron beam energies (5 ¿ 18 GeV) and beam currents (0.2 ¿ 2.5 A) in EIC Electron Storage Ring (ESR) operating scenarios requires a capability of adjusting coupling factor up to a factor of 20 for the 591 MHz Superconducting Radio Frequency (SRF) cavities, which contains two fundamental power couplers (FPC) delivering continuous wave (CW) 800 kW RF power to the beam. Currently, adjusting external Q of a SRF cavity is done by varying protrusion of FPC¿s inner conductor in beam pipe or using three stub tuner to adjust external Q value, which either has limit on tuning range or limit on operating power. This paper presents a method of tuning the FPC external Q by a multiple-waveguide tuner, which allows for high power, wide tuning range operations. The theoretical model of matching beam impedance with waveguide tuner and detailed matching conditions and limits will be presented. Follow the theoretical model, a preliminary design of a 3D waveguide tuner will be presented.
The work is supported by by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
 
poster icon Poster WEPWB089 [1.269 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB089  
About • Received ※ 26 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 19 August 2023 — Issue date ※ 22 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB092 Test-Stand for Conditioning of Fundamental Power Couplers at DESY FEL, vacuum, cavity, MMI 797
 
  • K. Kasprzak, Th. Buettner, A. Gössel, D. Klinke, D. Kostin, C. Müller, E. Vogel, M. Wiencek
    DESY, Hamburg, Germany
 
  During the construction of the European-XFEL, activities related to Fundamental Power Couplers (FPCs) were outsourced to external partners and the former FPC test-stand area at DESY was given up due to infrastructure rearrangements. For the study of various XFEL upgrade scenarios a new test-stand for conditioning of FPCs at DESY is required. It will be used for evaluation of new coupler preparation methods with particular emphasis on Continuous Wave (CW) and long RF pulse operation. The new test-stand has been recently commissioned. Four FPCs have been prepared and tested. RF pulses were applied to the couplers, starting with the shortest possible pulse and increasing it’s power until maximum power was reached. The process was repeated with several pulse lengths until the maximum RF pulse length was reached. A review of the commissioning and first operation experience of the RF system are presented here.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB092  
About • Received ※ 15 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB098 Development and Evaluation of STF-Type Power Coupler for Cost Reduction at the High Energy Accelerator Research Organization vacuum, SRF, cryomodule, cavity 820
 
  • Y. Yamamoto, T. Matsumoto, S. Michizono
    KEK, Ibaraki, Japan
 
  At KEK, cost reduction study for STF-type input power coupler used in the STF-2 accelerator has been attempted since FY2015. In FY2019, one coupler was fabricated by some cost-effective and non-conventional methods including different alumina-ceramic material, copper plating and TiN coating. In high power RF test at room temperature, this coupler achieved 1 MW at 900 µsec/5Hz, and 935 kW @1.65 msec/5Hz. After that, this coupler experienced 10 thermal cycle tests from room temperature to liquid nitrogen temperature without vacuum leakage. In this report, the detailed results will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB098  
About • Received ※ 17 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA03 Heavily Damped Crab Cavities for High Luminosity Collisions cavity, HOM, impedance, collider 986
 
  • B.P. Xiao
    BNL, Upton, New York, USA
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
 
  Funding: Work supported by BSA under U.S. DOE contract No. DE-SC0012704, by JSA under U.S. DOE Contract No. DE-SC0002769, and by DOE Contract No. DE-AC02-76SF00515.
Next generation colliders require crab cavities to mitigate parasitic collisions caused by finite crossing angle for luminosity leveling and detector data pile up reduction. The Electron Ion Collider (EIC) crab cavity designs will be introduced as an example to fulfill the geometrical constraints, crabbing voltages, multipole components, Higher Order Mode (HOM) power and impedance budgets. Operational challenges such as tuning, high gain low delay control loop, amplitude and phase noises control will be discussed.
 
slides icon Slides FRIBA03 [3.666 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA03  
About • Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 06 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)