Paper | Title | Page |
---|---|---|
MOXA01 |
Successful Beam Commissioning of Chinese ADS Injector-II | |
|
||
Since 2011, the key technologies for superconducting proton linac were developed in CAS for Accelerator Driven System. The sc linac of 10 MeV base on spoke resonators (Spoke), named injector I, was built in IHEP. The other one base on half-wave resonators (HWR), named injector II, was built in IMP. Both injectors were commissioned successfully with more than 1 mA CW beam. The front-end demo linac for ADS is based on injector II with succeeding by one taper-type HWR cryomodule and one Spoke cryomodule. It can accelerate 10 mA beam to energy of 25 MeV. The last two cryomodules of the demo linac started tunnel installation since January and cooling down in May. The first beam was on May 27th, and 12 mA (@ 26 MeV) pulse beam and 170 us (@ 25 MeV) CW beam were demonstrated on July 6th. The background of the project will be introduced. The lessons and experiences of CW SRF and mA beam commissioning on injector II and the 25 MeV demo linac will be presented. | ||
![]() |
Slides MOXA01 [16.512 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOXA02 | The Commissioning of the European XFEL Linac and its Performance | 1 |
|
||
Funding: Presented on behalf of the XFEL Accelerator Consortium. Work supported by the respective funding agencies of the contributing institutes; for details see www.xfel.eu. The main linac of the superconducting accelerator of the European XFEL presently consists of 96 accelerator modules, each housing eight 1.3 GHz TESLA-type cavi-ties, with an average design gradient of 23.6 MV/m. The performance of each individual module has been tested after module assembly in the Accelerator Module Test Facility (AMTF) at DESY. The 2-year period of module installation to the accelerator tunnel was finished in August 2016. In order to recheck and re-establish the performance of the input power couplers, warm processing of nearly all installed modules was performed before the first cool-down during Dec 2016 / Jan 2017. Four consecutive modules are connected to one 10 MW klystron and form a so-called RF station, which is powered and controlled individually during operation. By June 2017 23 of 25 RF stations have been commissioned for beam acceleration including frequency tuning, various calibrations and LLRF adjustments. A preliminary beam energy of 14 GeV was achieved, which is sufficient for first lasing experiments. No significant performance degradation has been observed so far. The commissioning experience and the available RF performance data will be presented. |
||
![]() |
Slides MOXA02 [6.896 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOXA02 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOXA03 | The 30MeV Stage of the ARIEL e-linac | 6 |
|
||
A MW class cw superconducting electron linac (e-Linac) is being installed at TRIUMF as a driver for radioactive beam production as part of the ARIEL project. The e-linac final configuration is planned to consist of five 1.3GHz nine-cell cavities housed in three cryomodules with one single cavity injector cryomodule (EINJ) and two double cavity accelerating cryomodules (EACA, EACB) to accelerate in continuous-wave (cw) up to 10mA of electrons to 50MeV. The e-Linac is being installed in stages. A demonstrator phase (2014) consisting of a 300kV electron gun, EINJ, and a partially outfitted EACA with just one accelerating cavity was installed for initial technical and beam tests to 22.9MeV. A Stage 2 upgrade now installed has a completed EACA to reach an operational goal of 3mA of electrons to 30MeV for first science from the ARIEL ISOL targets. A single 290kW klystron is used to feed the two EACA cavities in vector-sum closed-loop control. The paper is focused on the SRF challenges: systems design, cavity and cryomodule performance, rf ancillaries preparation and performance, LLRF and RF system performance and final beam test results. | ||
![]() |
Slides MOXA03 [13.981 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOXA03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOXA05 |
The LCLS-II SRF Linac | |
|
||
The LCLS-II project, a 4 GeV electron accelerator used to produce both hard and soft x-rays, is driven by a c.w. electron accelerator operating at 1.3 GHz. The project requires the fabrication, assembly and testing of 35 ' 1.3 GHz cryomodules and 2 ' 3.9 GHz cryomodules in order to generate the 4 GeV electron beam. The 280 TESLA style cavities used in the 1.3 GHz cryomodules have been modified for c.w. operation and are also utilizing nitrogen doping in order to achieve average Q0 of > 2.7·1010 at 16 MV/m. The status of the cavity and cryomodule testing will be reported on in this talk along with the challenges of achieving and maintaining the high Q0 in the cryomodule. | ||
![]() |
Slides MOXA05 [14.053 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOYA01 | The Superconducting Accelerator for the ESS Project | 24 |
|
||
The European Spallation Source, ESS, is under construction in Lund since 2014. While the installation of the source and the normal conducting part will start in this autumn, the production and testing of cryomodules and cavities for the superconducting accelerator is in full swing at the partner laboratories. The spoke cavities and cryomodules will be provided by IPN Orsay and the testing of those modules will take place at Uppsala University. Prototyping and assembly of the elliptical cryomodules series is occurring at CEA Saclay, and the modules will be tested at a new test stand at ESS. The fabrication and test of the medium beta cavities is provided by INFN Milan and STFC Daresbury for the high beta cavities respectively. An overview of the current activities and test results will be presented in this talk. | ||
![]() |
Slides MOYA01 [26.361 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOYA01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOYA02 | BESSY VSR: SRF Challenges and Developments for a Variable-pulse Length Next-generation Light Source | 29 |
|
||
The BESSY VSR project represents an exciting alternative to diffraction limited storage rings in the development of a next generation light source. Such a system should be capable to store "standard" (some 10 ps long) and "short" (ps and sub-ps long) pulses simultaneously in the storage ring opening the door to picosecond dynamic and high-resolution experiments at the same facility. This unique feature can be created by the introduction of the beating effects produced by higher harmonic SRF cavity systems (1.5 GHz & 1.75 GHz). The challenging design specifications as well as the technological demands on the SRF system make BESSY VSR a defiant project where non-standard techniques such as waveguide-damped cavities have been further developed. This talk focuses on the new SRF developments that includes wveguide-damped cavities, high-power couplers and higher-order mode absorbers that must handle nearly 2 kW of HOM power. The cryomodule design and its interaction with the beam will also be discussed.
Comment: VSR concept was introduced at SRF15. Much development work has now been done. Here the focus is more one the technology of VSR and the talk could also be listed under "SRF technology R&D" |
||
![]() |
Slides MOYA02 [7.961 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOYA02 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOYA03 | Progress of the RAON | 36 |
|
||
Funding: This work was supported by the Institute for Basic Science funded by the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) under Contract 2013M7A1A1075764 Construction of the RAON heavy ion accelerator facility is in-progress in Korea. The driver linac is a superconducting linac with 200 MeV/u for uranium beam and 400 kW beam power. Prototyping of major components and their tests are proceeding including superconducting cavities, superconducting magnets and cryomodules. December 2016, the RFQ accelerated oxygen beam. Status report of the RAON accelerator systems is presented. |
||
![]() |
Slides MOYA03 [10.275 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOYA03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB009 | Progress of 650 MHz SRF Cavity for eRHIC SRF Linac | 64 |
|
||
Funding: This work is supported by LDRD program of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. eRHIC ERL SRF requires 160 5-cell 650 MHz SRF cavities. The 650 MHz cavity has been designed and two prototypes have been fabricated, one Cu cavity for HOM study and one Nb cavity for cavity performance study. This paper will describe cavity design and the progress of prototyping. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB009 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB010 | Design of the 2×4-cell Superconducting Cryomodule for the Free-electron Laser | 67 |
|
||
A 2×4-cell superconducting linac module for the THz-FEL facility has been developed at the China Academy of Engineering Physics, which is expected to provide 6~8 MeV quasi-CW electron beams with an average current of 1~5 mA. The design of the cryomodule is presented in this paper. The dynamic and static heat load have been evaluated to reasonable level. The temperature distribution inside the cryomodule has been optimized by simulation, as well as mechanical structure and the magnetic shielding. | ||
![]() |
Poster MOPB010 [1.019 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB010 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB011 | CEA Cryomodules Design for SARAF Phase 2 | 70 |
|
||
CEA is committed to delivering a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40.1 MeV. The SCL consists in 4 cryomodules separated by warm diagnostics housing beam diagnostics. The first two identical cryomodules host 6 half-wave resonator (HWR) low beta cavities (β = 0.091), 176 MHz. The last two identical cryomodules are equipped with 7 HWR high-beta cavities (β = 0.181), 176 MHz. The beam is focused through superconducting solenoids located between cavities housing steering coils. A Beam Position Monitor is placed upstream each solenoid. A diagnostic box containing a beam profiler and a vacuum pump will be placed at the end of each cryomodule. The cryomodules and the warm sections are being designed. These studies will be presented in this poster. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB011 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB012 | Status of the IFMIF LIPAc SRF Linac | 74 |
|
||
The IFMIF accelerator aims to provide an accelerator-based D-Li neutron source to produce high intensity high energy neutron flux to test samples as possible candidate materials to a full lifetime of fusion energy reactors. A prototype of the low energy part of the accelerator is under construction at Rokkasho in Japan. It includes one cryomodule containing 8 half-wave resonators (HWR) operating at 175 MHz and eight focusing solenoids. This paper presents the status of the IFMIF SRF Linac. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB012 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB013 | European XFEL Input Coupler Experiences and Challenges in a Test Field | 78 |
|
||
102 European XFEL accelerating modules with 816 superconducting cavities and main input RF power couplers were assembled and then tested at DESY prior to installation in the European XFEL tunnel. In the Accelerating Module Test Facility (AMTF) warm and cold RF tests were done. The test results went directly to the operational setup for the LINAC. Main input couplers did present several problems during the tests, resulting in some minor coupler design changes as well as in a few repair actions. The experience got from the said testing operation is worth to be shared and is presented here together with a discussion. | ||
![]() |
Poster MOPB013 [0.648 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB013 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB015 | Accelerator Module Repair for the European XFEL Installation | 82 |
|
||
Repair actions of different extent have been performed at 61 modules of the 100 accelerating series modules for the European XFEL to qualify them for the tunnel installation. Four modules could not be repaired in time. CEA Saclay managed to perform three major repairs in parallel to the series module integration, the residual repair actions took place at DESY Hamburg. In this paper we will give an overview on the various technical problems which required being fixed before the tunnel installation and on the repair actions performed. | ||
![]() |
Poster MOPB015 [9.354 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB016 | Operation of Diamond Superconducting RF Cavities | 87 |
|
||
The Diamond Light Source storage ring has been in operation using superconducting RF cavities since 2007. Diamond has four superconducting cavity modules with two usually installed at any one time. The four cavities perform differently in many aspects such as reliable operating parameters and time in service, with the longest in continuous service for 7 years without failure and the shortest failing after only 8 months. All Diamond superconducting RF cavities suffered many fast vacuum trips in their early years, but after many years of efforts, the performance of the cavities have now been effectively managed by weekly conditioning, partial warm-up during shut down and cavity voltage level control. We will discuss our experience with superconducting RF cavities and our future plan. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB016 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB017 | Multiphysics Simulations of the Wide Opened Waveguide Crab-cavity | 90 |
|
||
In the frame of a FCC study a first prototype of a compact superconducting crab-cavity, using Nb-on-Cu-coating technique is being manufactured and investigated. The design, which is based on the ridged waveguide resonator, is subjected to multipacting and pressure sensitivity simulations. First results of theses simulations are presented and compared to those of other SRF cavities. Furthermore, several aspects related to the design of the fundamental mode coupler and HOM dampers are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB017 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB018 | Testing of SRF Cavities and Cryomodules for the European Spallation Source | 95 |
|
||
The European Spallation Source (ESS) is currently under construction in Lund, Sweden. The ESS linear accelerator aims to deliver a 62.5 mA , 2.86 ms long proton beam onto a rotating tungsten target, at 14 Hz repetition rate, thus achieving an energy of 2 GeV and 5 MW power. Most of the beam acceleration happens in the superconducting fraction of the linac, which is composed of three sectors of cryomodules named after the cavities housed within. The first sector of the SRF linac is composed of 13 Spoke cryomodules containing 2 double-spoke cavities with a geometric beta of 0.5, the second is composed of 9 medium beta cryomodules each housing four elliptical cavities (β=0.67) and finally 21 high beta cryomodules enclosing four elliptical cavities (β=0.86). ESS has strategically built up a SRF collaboration with other European institutions, these partners will deliver through In-Kind agreements cavities and cryomodules performing within the ESS specification. This article describes the process leading to the acceptance of cavities and cryomodules received from the different partners and the necessary testing required prior to the final installation in the ESS tunnel. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB018 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB019 | Interface Challenges for the SRF Cryomodules for the European Spallation Source | 100 |
|
||
The European Spallation Source is currently under construction in Lund in southern Sweden. The main part of the accelerator will consist of two different types of cryomodules housing three different types of cavities ' double spoke cavities and two different elliptical cavities. The spoke cavities as well as the cryomodules will be provided by IPN Orsay, thus the external interfaces to the other accelerator systems have to be verified. While the procurement and assembly of the elliptical cryomodules will be performed by CEA Saclay, the cavities will be provided by INFN Milano and STFC Daresbury. Thus in addition to the external cryomodule interfaces, also the internal interfaces between cavities and cryomodules have to be taken care of. This contribution presents the challenges related to this work. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB020 | An Optimal Procedure for Coupler Conditioning for ESS Superconducting Linac | 103 |
|
||
An optimal procedure for coupler and cavity conditioning is proposed for the ESS superconducting cavities, which is applicable for different test stands and following installation in the ESS tunnel. A preliminary procedure has been developed and successfully tested at FREIA facility, Uppsala. The preliminary procedure will now be improved by integrating it into LLRF and EPICS control. This will be a joint effort between FREIA and ESS and will be used at the test stands in Lund and on the couplers installed in the tunnel. Developing the conditioning procedures on a common platform offers ESS significant advantages by allowing the procedures to be reused at different sites and by recording data in a consistent format. The details of the procedure, its development and testing will be reported and the future activities will be described. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB023 | Further Layout Investigations for a Superconducting CW-linac for Heavy Ions at GSI | 108 |
|
||
Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and very short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium beam energies. To keep the GSI-Super Heavy Element program competitive on a high level and even beyond, a standalone sc continuous wave Linac in combination with the GSI High Charge State injector, upgraded for cw-operation, is envisaged. The first LINAC section (financed by HIM and GSI) as a demonstration of the capability of 216 MHz multi gap Crossbar H-structures (CH) is still in the beam commissioning phase, while an accelerating gradient of 9.6 MV/m (4 K) at a sufficient quality factor has been already reached. Recently the overall Linac design, based on a standard cryomodule, comprising three CH cavities, a rebuncher section and two 9.3 T-solenoidal lenses, has to be fixed. This paper presents the status of the Linac layout studies as well as the integration in the GSI accelerator facility. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB023 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB024 | Steps Towards Superconducting CW-linac for Heavy Ions at GSI | 112 |
|
||
A superconducting (sc) cw-Linac at GSI should ensure competitive production of Super Heavies in the future. Further R&D for this cw-Linac, a so called 'Advanced CW-Demonstrator', with maximal energy of 3.5 MeV/u is ongoing. As a first step, the demonstrator project with one sc CH-cavity is near its completion, the beam tests are scheduled for mid-summer 2017. The completion of the 'Advanced CW-Demonstrator' includes successive construction of two new cryogenic modules comprising four CH-cavities and two solenoids each. In this contribution the layout of the cryomodules and the Helium distribution system are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB024 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB028 | HOM Coupler Design for CEPC Cavities | 115 |
|
||
Funding: This study was supported by National Key Programme for S&T Research and Development (Grant NO.: 2016YFA0400400) In this paper,it will be presented the higher order mode (HOM) coupler design for the Circular Electron-Positron Collider (CEPC) 650 MHz 2-cell cavity. The higher order modes excited by the intense beam bunches must be damped to avoid additional cryogenic loss and multi-bunch instabilities. To keep the beam stable, the impedance budget and the HOM damping requirement are given. A double notch coaxial HOM coupler, which will be mounted on the beam pipe, is planned to extract the HOM power below the cut-off frequency of the beam pipe. This paper summarizes the RF design of the HOM coupler, tolerance analysis, thermal analysis as well as mechanical structures. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB028 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB031 | Fabrication and Cold Test Result of FRIB β=0.53 Pre-production Cryomodule | 120 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The driver linac for the Facility for Rare Isotope Beams (FRIB) comprises four kinds of cavities (β=0.041, 0.085, 0.29, and 0.53) and six types of cryomodules including matching modules. FRIB has completed the fabrication and the cold test of a β=0.53 pre-production cryomodule, which is the first prototype for a half-wave (β=0.29 and 0.53) cavity. This paper describes the fabrication and the cold test result of the β=0.53 pre-production cryomodule including lessons learned. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB031 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB034 | Selection of the Type of Accelerating Structures for the Second Group of Cavity SC Linac Nuclotron-NICA | 125 |
|
||
The paper summorises the research results aimed on the choice of superconducting accelerating cavities for the second section of the SC linac Nuclotron-NICA injector project. This choice was based on comparative analysis of accelerating structures electrodynamic characteristics taking into account technological challenges of bulk niobium cavities production. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB034 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB035 | Cryogenic Probe Station at Old Dominion University Center for Accelerator Science | 128 |
|
||
With a growing effort in research and development of an alternative material to bulk Nb for a superconducting radiofrequency (SRF) cavity, it is important to have a cost effective method to benchmark new materials of choice. At Old Dominion University's Center for Accelerator Science, a cryogenic probe station (CPS) will be used to measure the response of superconductor samples under RF fields. The setup consists of a closed-cycle refrigerator for cooling a sample wafer to a cryogenic temperature, a superconducting magnet providing a field parallel to the sample, and DC probes in addition to RF probes. The RF probes will extract a quality factor from a sample patterned in a coplanar waveguide resonator structure on a 2' wafer. From the measured quality factor, the surface resistance and the penetration depth as a function of temperature and magnetic field will be calculated. This paper will discuss the design and measurement procedures of the current CPS setup. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB035 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB036 | The Study of Deposition Method of Nb3Sn Film on Cu Substrate | 131 |
|
||
Our work is mainly focused on the fabrication methods of Nb3Sn films on Cu substrates and film's properties. There are diffraction peaks of Nb3Sn in the X-ray diffraction patterns in which without diffraction peaks of copper compounds. Scanning electron microstructures of Nb3Sn film reflect its nice compactness and binding force between film and substrate. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB036 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB037 | Progress of the 2x4-Cell Superconducting Accelerator for the CAEP THz-FEL Facility | 134 |
|
||
The high average power THz radiation facility is now under construction in China Academy of Engineering Physics. The superconducting accelerator is one of the most important components for this facility, including two 4-Cell TESLA superconducting radio frequency cavities. The designed effective field gradients for both cavities are 10-12 MV/m. This paper will present the progress of the 2x4-cell superconducting accelerator, mainly including its construction and cryogenic test in Chengdu. At 2 K state, the cryomodule works smoothly and stably. The effective field gradients of both cavities have achieved 10 MV/m. Further beam loading experiments are now in progress. | ||
![]() |
Poster MOPB037 [5.124 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB037 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB040 | ESS High-beta Cavity Test Preparations at Daresbury Laboratory | 137 |
|
||
Science and Technology Facility Council is responsible for supplying, and testing 84 High beta elliptical SRF cavities, as part of the UK In Kind Contribution to the European Spallation Source (ESS). The High-β=0.86, cavities have been designed by CEA- Saclay and are a five cell Niobium cavity operating at 704.42 MHz. They are required to provide an accelerating gradient of 19.9 MV/m at an unloaded Q of 5x109. Preparations are underway to upgrade the cryogenic and RF facilities at Daresbury laboratory prior to the arrival of the first cavities. As part of these arrangements, a niobium coaxial resonator has been manufactured, to validate the test facility. The design considerations, for the coaxial resonator are presented, along with preliminary results. The RF measurement system to perform the cavity conditioning and testing is also presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB040 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB041 | Status of the SOLEIL Superconducting RF System | 141 |
|
||
The 352 MHz SOLEIL SRF systems consist in two cryomodules, each containing a pair of SC Nb/Cu cavities, cooled with LHe at 4K from a single 350 W cryogenic plant. In order to store 500 mA, a power of 575 kW and an accelerating voltage of 3-4 MV are required. The RF power is provided by 4 SSPA's delivering up to 180 kW each. The original cavity input power couplers, which are LEP-type antennas designed to handle up to 200 kW, are being replaced by upgraded versions, able to operate at 300 kW CW. This will open the possibility to operate at full beam current with only one active cryomodule. The SRF system operational experience over the past ten years as well as the different upgrades will be reported here. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB041 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB042 | The TRIUMF/VECC Injector Cryomodule Performance | 144 |
|
||
The collaboration on superconducting electron Linac for rare ion beam facilities ARIEL (Advanced Rare Iso-topE Laboratory) [1-4] and ANURIB [5] (Advanced Na-tional facility for Unstable and Rare Isotope Beams) has resulted in production of a superconducting Injector Cryomodule (VECC ICM) at TRIUMF for VECC. The cryomodule design utilizes a unique box cryomodule with a top-loading cold mass. The hermetic unit consists of a niobium cavity which operating at 1.3GHz and connected with two symmetrically opposed couplers which can deliver 100kW RF power to the beam. Liquid helium supplied at 4.4 K is converted to superfluid helium-II through a cryogenic insert on board which includes 4 K phase separator, 4K/2K heat exchanger and Joule-Thompson valve. In 2016, the VECC ICM has been tested at TRIUMF and demonstrated 10.5 MeV acceleration. A summary of the VECC ICM commissioning are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB042 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB043 | Pansophy, a JLab SRF Engineering Data Management System, Supporting Data Collection, Retrieval and Analysis Utilized by LCLS-II | 148 |
|
||
Pansophy is an Engineering Data Management System that provides a comprehensive solution for managing information in the production and testing of cryomodules. It is especially suited to supporting the Data & Quality Management Systems for large projects like LCLS-II. With extensive amounts of data collected for an individual project, data retrieval to facilitate feedback and enhancement of production and processing activities is a high priority. The priority shares importance with the needs of managing the project, including production status, NCR, and Quality Management reports. Recent Pansophy enhancements have been to Data and Quality management reports and statistical analysis. Such enhancements include a database driven menu system, extended MSWord macro and preprocessing of travelers, and an extensive reporting system. The reporting system allows managers and group leaders to quickly respond to the needs of the project in areas of cavity and cryomodule production, data collection, NCR, Quality Management and schedule. Extensions include integration with the SRF inventory system PRIMeS, allowing traceability from receiving of manufactured parts to final cryomodule product. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB043 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB044 | Magnetic Hygiene Control on LCLS-II Cryomodules Fabricated at JLab | 153 |
|
||
Funding: U.S. DOE Contract No. DE-AC05-06OR23177 and the LCLS-II project. Jefferson Lab (JLab) is in collaboration with Fermi Na-tional Accelerator Laboratory (Fermilab) to build 18 cryomodules to install at the SLAC National Accelerator Laboratory's tunnel as part of the Linac Coherent Light Source upgrade project (LCLS-II). Each LCLS-II cry-omodule hosts 8 superconducting niobium cavities that adopt the nitrogen doping technique, which aims to en-hance the cavity quality factor Qo to reduce the consumption of liquid helium used to cool down the cavities. It is known that the Qo of niobium cavities is affected by cavity surface magnetic field. Traditionally, magnetic shields made of high magnetic permeability mu-metals are employed as a passive shielding of the ambient magnetic fluxes. During the LCLS-II cryomodule development, magnetic hygiene control that includes magnetic shielding and demagnetization of parts and the whole-machine is implemented. JLab and Fermilab worked closely on developing magnetic hygiene control procedures, identifying relevant tools, investigating causes of magnetization, magnetic field monitoring, etc. This paper focuses on JLab's experiences with LCLS-II cryomodule magnetic hygiene control during its fabrication. Authored by Jefferson Science Associates, LLC. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for Government purposes. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB044 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB045 | JLab New Injector Cryomodule Design, Fabrication and Testing | 158 |
|
||
Funding: U.S. DOE Contract No. DE-AC05-06OR23177. A new Injector Cryomodule (INJ CM) aimed to replace the existing Quarter Cryomodule in the CEBAF tunnel has been developed at Jefferson Lab (JLab). It is sched-uled to be first tested in the Cryomodule Test Facility (CMTF) for module performance then the Upgraded Injector Test Facility (UITF) with electron beam. This new cryomodule, hosting a 2-cell and 7-cell cavity, is designed to boost the electron energy from 200 keV to 5 MeV and permit 380 uA - 1.0 mA of beam current. The 2-cell cavity is a new design whereas the 7-cell cavity is refurbished from a low loss cavity from the retired JLab Renascence Cryomodule. The INJ CM adopts quite a few designs from the JLab 12 GeV Upgrade Cryomodule (C100). Examples of this include having the cold mass hung from a spaceframe structure by use of axial and transverse Nitronic rods, cavities to be tuned by scissor-jack style tuners and the end cans are actually modified from C100 style end cans. However, this new INJ CM is not a quarter of the C100 Cryomodule. This paper focuses on the major design features, fabrication and alignment process and testing of the module and its components. Authored by Jefferson Science Associates, LLC. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for Government purposes. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB045 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB046 | LCLS-II Cryomodule Production at JLab | 163 |
|
||
Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515. The LCLS-II cryomodule construction program leverages the mature XFEL cryomodule design to produce technologically sophisticated cryomodules with a minimum of R&D according to an accelerated manufacturing schedule. Jlab, as one of the partner labs, is producing 18 cryomodules for LCLS-II. To meet the quality and schedule demands of LCLS-II, many upgrades to the JLAB cryomodule assembly infrastructure and techniques have been made. JLab has installed a new cleanroom for string assembly and instituted new protocols to minimize particulate transfer into the cavities during the cryomodule construction process. JLab has also instituted a set of magnetic hygiene protocols to be used during the assembly process to minimize magnetic field impingement on the finished cavity structure. The goal has been to have gradients, both maximum and field emission onset, that do not degrade between the cavity vertical test and final cryomodule qualification, while maximizing the Q0 of each finished cavity. Results from the prototype cryomodule assembly are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB046 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB049 | Upgraded Cavities for the CEBAF Cryomodule Rework Program | 168 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The CEBAF cryomodule rework program has been a successful tool to recover and maintain the energy reach of the original baseline 6 GeV accelerator. The weakest original modules with eight five-cell cavities assembled in four 'pairs', with a specification when new of 20 MV per cryomodule (5 MV/m), are disassembled, re-cleaned with modern techniques and re-qualified to at least 50 MV (12.5 MV/m), (leading to the acronym 'C50'). The cost per recovered MV is much less than building new modules. However over time the stock of weak modules is being used up and the voltage gain per rework cycle is diminishing. In an attempt to increase the gain per cycle it is proposed to rework the cavities by replacing the original accelerating cells with new ones of an improved shape and better material. The original CEBAF HOM and FPC end groups are retained. The goal is to achieve up to 75 MV (18.75 MV/m) for the reworked module ('C75'). We report on the fabrication experience and test results of the first trial pair, containing two such reworked cavities. |
||
![]() |
Poster MOPB049 [1.503 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB049 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB050 | Cavity Processing and Testing Activities at Jefferson Lab for LCLS-II Production | 173 |
|
||
Funding: Work supported by Jefferson Science Associates, LLC under U.S. DOE Contracts DE-AC05-06OR23177 and DE-AC02-76SF00515 for the LCLS-II Project. Cryomodule production for LCLS-II is well underway at Jefferson Lab. This paper explains the process flow for production cavities, from being received at the Test Lab to being assembled onto cavity strings. Taking our facility and infrastructure into consideration, process optimization and process control are implemented to ensure high quality products. |
||
![]() |
Poster MOPB050 [2.338 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB050 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB111 | European XFEL Linac RF System Conditioning and Operating Test | 328 |
|
||
96 accelerating modules with 768 TESLA/European-XFEL type superconducting cavities were installed in the European XFEL LINAC tunnel (XTL) in the fall 2016. Warm conditioning of the RF system - High/Low Level RF System and main input couplers - begun even before finishing the accelerator installation works. All modules were conditioned and tested prior to the installation in the tunnel in the AMTF test stand at DESY. Nevertheless, due to some repair activities on warm input coupler parts, warm conditioning was needed on a few modules/couplers. Cooling down to 2K begun in December 2016 and was finished in January 2017. Since then cold conditioning and tests are running. Several cavities in a few modules did show the multipacting (MP) effects, mostly because a cavity vacuum was filled with a dry nitrogen for before mentioned repairs on couplers in some modules. Said MP effects were seen in AMTF as well. All MP effects were successfully conditioned until now. The warm/cold RF system conditioning and its results/experiences/limits are described and discussed. | ||
![]() |
Poster MOPB111 [1.267 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB111 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUXAA02 | HIE Isolde Cavity Production & Cryomodule Commissioning, Lessons Learned | 338 |
|
||
The lessons learned during the HIE Isolde Cavity Production, the Cryo Module Assembly and Commissioning will be presented | ||
![]() |
Slides TUXAA02 [8.191 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUXAA02 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUXAA03 | Progress of FRIB SRF Production | 345 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The Facility for Rare Isotope Beams (FRIB), under construction at Michigan State University, will utilize a driver linac to accelerate stable ion beams from protons to uranium up to energies of >200 MeV per nucleon with a beam power of up to 400 kW. The FRIB linac consists of 46 cryomodules containing a total of 324 superconducting radio-frequency (SRF) resonators and 69 superconducting solenoids. The design of all six type cryomodules has been completed. The critical SRF components are tested as subsystem and validated in the pre-production cryomodules. The mass production of SRF cryomodules is underway. Here we report on the progress of the technical construction of FRIB superconducting linac. |
||
![]() |
Slides TUXAA03 [4.006 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUXAA03 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |