

18th International Conference on **RF Superconductivity** Lanzhou China July 17-21, 2017

The Commissioning of the European XFEL Linac and its Performance

Detlef Reschke

Winfried Decking, Nick Walker, Hans Weise - DESY

for the European XFEL Accelerator Consortium and Commissioning Team

SRF 2017, Lanzhou

f 🖪 🖸 🔊 🕾 🚍 💳

Google" Custom Search

INFOS & SERVICES

- » PRESS
- >> WORK AND PRIVATE LIFE
- » OFFERS FOR PUPILS
- » SERVICES FOR INDUSTRY
- » DESY USER

World's largest X-ray laser

generates first laser light

» ACCELERATORS

» PHOTON SCIENCE

» PARTICLE PHYSICS

Light of the future » DESY is the main shareholder of

the next generation X-ray laser

In the metropolitan region of Hamburg, the European XFEL, the biggest X-ray laser in the world, has reached the last major milestone before the official opening in September. The 3.4 km long facility

1 2 3 4 5

The super X-ray laser » More about the European XFEL in DESY's research magazine!

International project realised in Hamburg area, Germany

- International project realised in Hamburg area, Germany
- 17.5 GeV superconducting linac, 500 kW beam power
- 27000 pulses per second in 10 Hz operation

- International project realised in Hamburg area, Germany
- 17.5 GeV superconducting linac, 500 kW beam power
- 27000 pulses per second in 10 Hz operation
- Three variable gap undulators for hard and soft X-rays
- Initially 6 equipped experiments

- International project realised in Hamburg area, Germany
- 17.5 GeV superconducting linac, 500 kW beam power
- 27000 pulses per second in 10 Hz operation
- Three variable gap undulators for hard and soft X-rays
- Initially 6 equipped experiments
- All accelerator and beamlines in tunnels 6 -25 m below surface

XFEL SRF Accelerator Overview

- s.c. linac with 97 1.3 GHz superconducting modules + 1 third harmonic module
- design gradient: 23.6 MV/m; pulsed with 1.3 ms rf pulse length
- 4 modules / 32 s.c. cavities are connected to one 10 MW klystron ("RF station")
- 12 modules form a cryogenic string
- down to app. 50m behind the last module the complete beam vacuum is "particle free"

XFEL SRF Project History

- 1990's: Construction of the Tesla Test Facility (TTF) based on 1.3 GHz cavities (**TESLA type cavity**) and cryomodules
- 2000: First lasing at 109 nm at TTF, now FLASH
- 2002: TESLA TDR supplement with stand-alone XFEL
- 2006: European XFEL TDR + preparation of industrial cavity production
- 2007: Preparation of cryomodule assembly at CEA Saclay
- 2010: Orders placed for 800 series cavities + first prototype module assembly at CEA Saclay + Accelerator Consortium formed
- 2012: First cavities delivered "ready for test" + test at AMTF
- 2013: First series modules assembled at CEA Saclay + test at AMTF
- 2014: First modules installed to the accelerator tunnel
- 2016: Last series modules assembled + installed to the tunnel Start of commissioning

XFEL Beam Commissioning Progress

View Along the 1 km Long Superconducting Accelerator

τ

- N.c. photoinjector conditioned and characterized at PITZ, DESY-Zeuthen
- Injector cool-down 12/2015
- First Beam on 18/12/2015 commissioning till Q2/2016
- 3.9 GHz system operational from day 2
- 1.3 GHz module w/o cavity limitation up to 160 MeV
- Full bunch train length (27000 bunches/s) reached for 20pC-1000pC bunch charges
- Photocathode laser (Yb:YAG laser from Max-Born Institute Berlin 257 nm ≤ 4 µJ; 3 ps) with excellent up-time
- Laser heater commissioned (but not in routine operation)

P. Pierini, MOPPB100 M. Schmökel, MOPB088 INFN Milano, MOPB077

- N.c. photoinject
- Injector cool-dov
- First Beam on 1
- 3.9 GHz system
- 1.3 GHz module
- Talk by Paolo Pierini on Friday

Z, DESY-Zeuthen

- P. Pierini, MOPPB100 M. Schmökel, MOPB088 INFN Milano, MOPB077
- Full bunch train length (27000 bunches/s) reached for 20pC-1000pC bunch charges
- Photocathode laser (Yb:YAG laser from Max-Born Institute Berlin 257 nm ≤ 4 µJ; 3 ps) with excellent up-time
- Laser heater commissioned (but not in routine operation)

XFEL Overview of XFEL Cryogenic Equipment

- Upgraded HERA cryo plant with new 2K cold compressors (CC)
- Cooling capacity
- 2K :>1.9 kW 5/8K : 4 kW 40/80K : 26 kW
- Linac is one 1.5 km long cryo-string (300t)
- 671 control valves, >3,800 sensors, 433 regulation loops, > 22,000 records, ...
- Problem with lifetime of CC-engines (bearings)
 => close to solution!

SRF 2017, July 17, 2017 Detlef Reschke, DESY

XFEL Overview of XFEL Cryogenic Equipment

- Upgraded HERA cryo plant with new 2K cold compressors (CC)
- Cooling capacity
- 2K :>1.9 kW 5/8K : 4 kW 40/80K : 26 kW
- Linac is one 1.5 km long cryo-string (300t)
- 671 control valves, >3,800 sensors, 433 regulation loops, > 22,000 records, ...
- Problem with lifetime of CC-engines (bearings) => close to solution!

XFEL Cryo: Operational Stability at 2K

- Requirement on 2K pressure stability: 2% peak to avoid cavity detuning
- Complex system requires operation experience (= commissioning time)
- Inner-system heaters to counteract dynamic processes
 - => Automation of heat load compensation and

"compromise" adjustment of control parameters successful

- HV Modulators in surface hall
- Connected to pulse transformer via up to 2km long pulse cables
- Absolute RF power measurement at Klystron, only ! (One power meter per Klystron arm)

The Commissioning of the European XFEL Linac and its Performance

XFEL Cryomodules: From AMTF to XTL

- The initially projected rate of module assembly, testing and installation to XTL was <u>one cryomodule per week</u>.
- Variation in <u>coupler availability</u> was compensated by additional efforts at CEA Saclay wrt. assembly rate.
- Gained experience with module testing was used to <u>shorten test duration</u> of module XM40+.
- During the end of production the <u>major non-conformity</u> was overheating at the 70K coupler window; all necessary warm coupler parts were exchanged.
- Repaired modules were retested at AMTF only when needed.
- Individual waveguide tailoring was done for all modules depending on the cavity performance

- M. Schmökel, MOPB088
- E. Vogel, MOPB015
- F. Hoffmann, MOPB013
- K. Kasprzak, MOBP106

XFEL Cryomodule counting

- 103 modules (XM-3 to XM100) assembled at CEA Saclay and tested at AMTF
 - 1 module in the injector
 - 96 modules in 103 working weeks assembled to XTL
 - 5 modules not installed yet
 - XM8 (leaky cryogenic line)
 - XM46 & XM50 (inacceptable cavity performance)
 - XM99 (leaky beam line)
 - XM100 now spare module (XM-2 used in tunnel)
 - XM-3 used for cw-tests (non PED certified cavities)
- In XTL one RF station (A26) not installed yet
 - Two RF stations require final installation work (A24,A25)

89 modules / 712 cavities for operation so far

- 5 cav. (shorted due to poor performance)
- 4 cav. (shorted due to coupler heating)
- = 703 cavities accelerating

European
XFELThe Commissioning of the European XFEL Linac and its PerformanceAMTF Cryomodule Test:
Average Gradient Performance

- Module performance well above specs. and visible improvement with time
- Tunnel installation used <u>sorting of</u> <u>modules based on</u> <u>AMTF performance</u>
- XM98 as scavenger module

vertical test (clipped at 31 MV/m) cryomodule performance

Remark:

Clipping at 31 MV/m is done due to max. available RF power; limit given by waveguide distribution.
 N_{cavs}
 Average
 RMS

 VT
 815
 28.3 MV/m
 3.5

 CM
 815
 27.5 MV/m
 4.8

European The Commissioning of the European XFEL Linac and its Performance European Impact of Waveguide Distribution (WD) system XFEL (Installed Gradient)

One 10-MW klystron drives four modules (32 cavities)

courtesy V. Katelev

- WD of each module tailored according to AMTF test results:
 - maximising voltage
 - up to 3dB difference between cavity pairs allowed
- Allow up to 3dB split between adjacent cryomodule pairs
- Assumption: Equal power output from two klystron arms
- => Reduction in installed gradient

The Commissioning of the European XFEL Linac and its Performance Impact of Waveguide Distribution (WD) system European (Installed Gradient) XFEI

courtesy V. Katelev

One 10-MW klystron drives four modules (32 cavities)

to AMTF test results:

pairs allowed

two klystron arms

maximising voltage

Cryomodule position in linac

=> Reduction in installed gradient

- For 14 GeV: 23 RF stations (89 modules) in operation
- At present the bunch compressor working point of BC2 (2.4 GeV) leads to maximum energy of 19.5 GeV

Energy (GeV)

Some gradient reduction in tunnel configuration observed
 => Tunnel waveguide distribution and calibrations under investigation

- Operation of RF stations "off beam" allows commissioning/investigation of single RF stations parallel to lasing operation
- More cavities needed short Multipacting processing than in AMTF test

Preliminary: Average Q-value is >10¹⁰ estimated from the dynamic cryo losses at 12-14 GeV

- Handed over to operations and controlled via FSM
- Detailed measurements will show the path towards higher beam energies A1
- Inner loop RF stability <0.01 deg, < 0.01%</p>
- Preliminary measurements of beam energy jitter ≈ 10⁻⁴
- 0.15nm SASE delivered to experimental area

The last two RF stations still require longer tunnel access

21

XFEL One Kilometer of Cold Linac

heral Assembly of the European XFEL Accelerator Consortium 04.05.2017

THANK YOU TO ALL CONTRIBUTORS TO THE

G

