Paper |
Title |
Other Keywords |
Page |
THCDMH01 |
Conceptual Design of Superconducting Combined-Function Magnets for the Next Generation of Beam Cancer Therapy Gantry |
proton, quadrupole, dipole, sextupole |
138 |
|
- S.T. Sanfilippo, A. Anghel, C. Calzolaio, A. Gerbershagen, J.M. Schippers
PSI, Villigen PSI, Switzerland
|
|
|
An increasing number of proton therapy facilities are being planned and built at hospital based centers. Many facilities use rotatable gantry beamlines to direct the proton or ion-beam at the patient from different angles. A key issue is the need to make future gantries lighter and more compact with the use of cryogen-free superconducting magnets, in particular for the final bending section which can be of large aperture. Benefits of using the superconducting technology are: (1) the possibility to have a large momentum acceptance, hence reducing the need to ramp the magnet and enabling new treatment techniques, (2) the size reduction due to a lower bend radius and (3) the weight reduction up to a factor ten. The latter will also significantly reduce the costs of the supporting structure. We present a conceptual design based on Nb3Sn superconducting combined function magnets (dipole, quadrupole, sextupole). The geometry using racetracks, the superconducting strand and cable parameters and the results of the thermal and the mechanical studies are reported. These magnets will work at a temperature of about 4.2 K cooled with cryocoolers.
|
|
|
Slides THCDMH01 [7.959 MB]
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THCDMH03 |
The Progress on Manufacturing and Testing of the SC Magnets for the NICA Booster Synchrotron |
booster, dipole, collider, synchrotron |
144 |
|
- H.G. Khodzhibagiyan, N.N. Agapov, P.G. Akishin, V.V. Borisov, A.V. Bychkov, A.M. Donyagin, A.R. Galimov, O. Golubitsky, V. Karpinsky, B.Yu. Kondratiev, S.A. Korovkin, S.A. Kostromin, A.V. Kudashkin, G.L. Kuznetsov, D.N. Nikiforov, A.V. Shemchuk, S.A. Smirnov, A.Y. Starikov, G.V. Trubnikov
JINR, Dubna, Moscow Region, Russia
|
|
|
NICA is a new accelerator collider complex under construction at the Joint Institute for Nuclear Research in Dubna. The facility is aimed at providing collider experiments with heavy ions up to Gold in the center of mass energy from 4 to 11 GeV/u and an average luminosity up to 1*1027 cm-2 s−1 for Au79+. The collisions of polarized deuterons are also foreseen. The facility includes two injector chains, a new superconducting booster synchrotron, the existing 6 AGeV superconducting synchrotron Nuclotron, and a new superconducting collider consisting of two rings, each 503 m in circumference. The booster synchrotron is based on an iron-dominated "window frame"- type magnet with a hollow superconductor winding analogous to the Nuclotron magnet. The design of superconducting magnets for the NICA booster synchrotron is described. The progress of work on the manufacturing and testing of the magnets is discussed. The calculated and measured values of the characteristics of the magnets are presented. The status of the facility for serial test of superconducting magnets for the NICA and FAIR projects is described.
|
|
|
Slides THCDMH03 [8.068 MB]
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPSC010 |
Magnetic Measurement System For The NICA Quadrupole Magnets |
quadrupole, booster, collider, cryogenics |
559 |
|
- A.V. Shemchuk
JINR/VBLHEP, Dubna, Moscow region, Russia
- V.V. Borisov, A.V. Bychkov, A.M. Donyagin, O. Golubitsky, H.G. Khodzhibagiyan, S.A. Kostromin, M.M. Omelyanenko, M.M. Shandov
JINR, Dubna, Moscow Region, Russia
|
|
|
NICA booster magnetic system consists of 40 dipole and 48 quadrupole superconducting magnets. Measurement of magnetic field parameters is assumed for each booster magnets. The booster quadrupole is 0.45 m-long, 47.5 mm pole radius magnet with design similar to the Nuclotron type quadrupole magnet. Focusing and defocusing quadrupole magnets are jointed in doublets. They will produce fields up to 21.5 T/m. Two magnetic measurements system with tangential and radial coils arrays were developed and produced. This paper describes the magnetic measurements methods as well as the first results of the magnetic measurements.
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|