Paper | Title | Page |
---|---|---|
TUOAC01 | Design and Measurements of a Damping Ring Kicker for the ILC | 846 |
|
||
Funding: Work supported by a contribution from the National Research Council of Canada. The International Linear Collider (ILC) requires ultra fast kickers for the damping ring. One option requires kickers which must produce pulses of 5 kV magnitude, with 6 ns rise and 6 ns fall time into a 50 Ohm, terminated, matched stripline deflector. The pulse must rise and fall within 12 ns. The pulse magnitude must be repeatable to a high accuracy. This paper describes a novel design for a suitable pulse generator for the damping ring kicker, in which 2 stacks of 1kV FETS are combined to generate the fast pulses. The design concept uses 2 parallel 100 Ω drivers combined to provide a 50 Ω driver. The need for 3 MHz burst mode operation for 1 ms at 5 Hz (or 10 Hz) gives an average rep rate of 15 kHz (or 30 kHz). Measurements and calculations are presented on the present state of the TRIUMF prototype pulse generator. |
||
|
Slides | |
TUOAC02 | Development and Testing of the ILC Marx Modulator | 849 |
Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515 Construction of the ILC 'Reference Design' Marx Modulator is complete, and testing is currently underway at SLAC. The Reference Design prototype is oil-free, air-cooled, and capable of delivering 120kV, 140A pulses at a rate of 5Hz. Total energy per pulse is 23,500 joules. Projected efficiency is greater than 96%. The Reference Design Marx modulator employs a stack of 12kV Marx modules that generate high-voltage output pulses directly from a 12kV input supply voltage. This direct switching eliminates the requirement for a massive transformer and reduces the capacitor bank size by more than a factor of four, yielding a considerably cheaper and more compact mechanical solution. Advantages of the Marx design include higher efficiency, smaller physical size, and a modular architecture that provides greater reliability and cost-effective PC board-level integration. This paper outlines the ILC Marx Modulator Development Program currently underway at SLAC. The paper presents detailed mechanical and electrical design diagrams, 3D field simulations, and operational test results for the full-scale Reference Design modulator prototype. |
||
|
Slides |