Design and Measurements of a Damping Ring Kicker for the ILC

M.J. Barnes# & G.D. Wait
TRIUMF, Vancouver, B.C., Canada

PAC’07

Now employed at CERN, Switzerland
Summary

• Motivation for the kicker R&D and the most challenging requirements;
• Design of the prototype ILC kicker and discussion of important design parameters;
• Measurement and simulation results for prototype ILC damping ring kicker;
• Conclusions.
Motivation & Challenges

• The International Linear Collider (ILC) requires ultra fast kickers for the damping ring;
• Deflection angle: 0.6 mrad deflection of 5 GeV electron beam;
• 2005 ILC baseline: considered a damping ring with bunch spacing in the range 3.08ns to 13.85ns, depending on the final configuration.
Kicker’s Principle Specifications

• The modulators must produce pulses of ±5 kV magnitude, with a width of $\leq 14\text{ ns}$ and rise and fall times of 6 ns or less (2005 specification);

• However a recent baseline suggests a pulse width $\leq 4.16\text{ ns}$, with a burst mode of 3.25 MHz;

• In order not to perturb neighbouring bunches in the bunch train, pre & post pulse kicker field must be close to zero;

• Burst mode of 3.25 MHz, for $\leq 1\text{ ms}$, gives an average repetition rate of up to 16.3 kHz.
Stripline Deflector Plates

- Stripline deflector plates chosen as default technology;
- The permissible rise-time (t_p) of the electrical pulse is given approximately by:

$$t_p = t_b - 2 \cdot l_s / (N \cdot c)$$

where, (t_b) is the beam gap and N is the number of sections into which the total stripline length (l_s) is sub-divided;

- If $t_b = 6$ ns and each set of striplines is 30 cm long (l_s/N), i.e. 1 ns fill time, $t_p = 4$ ns.
Pulse Generator

Simplified Schematic of a Possible Kicker System:

Examples of possible technologies for fast switch:
• Stacked MOSFET Switches (SMS);
• Inductive Adder (developed at SLAC/LLNL);
• Fast Ionization Dynistor (FID);
• Behlke MOSFET based switch.
Stacked MOSFET Switches (SMS)

- The DC storage capacitor is charged up to the required high voltage.
- The number of series modules, including redundancy, is chosen based on the switch voltage rating and required high voltage.
- In this example, with a storage capacitor, the MOSFET is gated on to initiate the pulse and gated off to terminate the pulse.
- The switch control unit is at switch source potential, i.e. floating with respect to ground.
- Examples of previous systems:
 - 500V, 3MHz (cont.), 120ns rise/fall;
 - ±12.5kV, 75kHz (cont.), 40ns rise/fall.
New Concept for SMS

Stacked MOSFET switch is a delay line.

\[Z = \sqrt{L/C}; \quad \tau = \sqrt{L \cdot C}; \quad \text{hence:} \quad \tau = \left(\frac{L}{Z} \right) \quad \text{and} \quad N \cdot \tau = N \cdot \left(\frac{L}{Z} \right) \]

• Therefore, for a given minimum inductance, the delay of a 100 Ω line is less than that of a 50 Ω line;
• A “delay-line” switch has been configured as ~100 Ω;
• Two parallel delay-lines would give 50 Ω.
“Old” 1 kV Modules

The rise and fall time of the pulse generated are related to:
- the intrinsic switching time of each FET (<3ns measured);
- the number of series FETs (15 * 1kV);
- the pulse propagation time through each level of the delay line.

\[
\tau = \frac{L}{Z}
\]
“New” 1 kV Modules

“New” (MuLan) card design has:

- Low inductance output from module;
- Plugs into low inductance backplane;
- Measurements on stack gave:
 - $\tau = 0.21\text{ns/level}$ (direct measurement);
 - $L = 30\text{nH} \pm 1.7\text{nH/level}$;
 - $C = 1.75\text{pF/level}$;
 - Hence $\tau = 0.23\text{ns/level}$ & $Z = 130\Omega$.

Measured pulses for 2.5kV, 5kV, 7.5kV, 10kV & 12.5kV DC supply; $C=1.75\text{pF}$.

- 35.2A corresponds to \(3.66\text{kV}\) load voltage (104\,Ω terminator).
- The amplitude is lower than 12.5 kV/2:
 - stack impedance is high (130\,Ω);
 - ~ 1\,Ω/FET on-state resistance;
 - C, of each level of the delay line, are not all pre-charged to 12.5kV.
Reduced Z of Delay Line

The position of the copper ground plane is changed to minimize post-pulse noise.

Measured pulses for 3kV, 6kV, 9kV & 12.5kV DC supply (C=3.3pF).

46.2A corresponds to 4.8kV load voltage (104Ω load resistor).
Parameters of Measured Pulse

- Measured 10% to 90% rise-time is 4.3ns for 12.5kV DC;
- Assuming limited bandwidth (500 MHz) of measurement system does not cause over overshoot, pulse rise-time could be as low as 3.7ns.
- Pulse width at 5% level: 13.7ns for 12.5kV DC.
Predicted Effect of Relative Timing

Triggering the FETs in sequence, starting at the top of the delay-line, such that:
• there is 0.3ns between FETs turning-on (to compensate for the delay between levels): predicted rise-time = 5.2ns (10% to 90%) [c.f. 5.5ns];
• there is -0.3ns between FETs turning-on: predicted rise-time = 6.7ns (10% to 90%), but faster fall.

Predicted load current with −0.3ns, 0ns & +0.3ns delay between adjacent FETs (12.5kV DC).
Conclusions

• Pulses of 4.8kV, 4.3ns (10% to 90%) measured rise (~3.7ns actual) and 5.5ns fall and a width of 13.7ns at the 5% level, have been generated at 60kHz continuous;
• This is close to meeting the specifications for the widest (14ns), 2005 baseline, ILC pulses;
• Pulse rise, fall and width can be further reduced by decreasing the stack inductance:
 • by reducing the FET spacing;
 • by increasing the gate drive;
 • using less FETs in series (presently use 1kV FETs !).
• BUT to achieve pulse widths of ≤4.16ns: Behlke switch (see WEPMN068) or FID are more suitable than a delay-line SMS – if they are shown to be capable of the burst-mode operation.