Paper | Title | Page |
---|---|---|
MOPOB13 | Post Irradiation Examination Results of the NT-02 Graphite Fins Numi Target | 99 |
|
||
Funding: Work supported by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 x 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potential localized oxidation in the heated region of the target. Understanding the long-term structural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB13 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOB14 | Experimental Results of Beryllium Exposed to Intense High Energy Proton Beam Pulses | 102 |
|
||
Funding: Work supported by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN's HiRadMat facility was carried out to take advantage of the test facility's tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB14 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOB35 | Design of the LBNF Beamline Target Station | 146 |
|
||
Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab's NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB35 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOA44 | Future Prospects of RF Hadron Beam Profile Monitors for Intense Neutrino Beam | 373 |
SUPO24 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795. A novel beam monitor based on a gas-filled RF resonator is proposed to measure the precise profile of secondary particles downstream of a target in the LBNF beam line at high intensity. The RF monitor is so simple that it promises to be radiation robust in extremely high-radiation environment. When a charged beam passes through a gas-filled microwave RF cavity, it produces electron-ion pairs in the RF cavity. The induced plasma changes the gas permittivity in proportion to the beam intensity. The permittivity shift can be measured by the modulated RF frequency and quality factor. The beam profile can thus be reconstructed from the signals from individual RF cavity pixels built into the beam profile monitor. A demonstration test is underway, and the current results has shown technical feasibility. The next phase consists of two stages, (1) to build and test a new multi-cell 2.45 GHz RF cavity that can be used for the NuMI beamline, and (2) to build and test a new multi-cell 9.3 GHz RF cavity that can be put in service in a future beamline at the LBNF for spatial resolution. These two resonant frequencies are chosen since they are the standard frequencies for magnetron RF source. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA44 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOB63 | POSINST Simulation on Fermilab Main Injector and Recycler Ring | 632 |
|
||
The Fermilab accelerator complex is currently undergoing an upgrade from 400kW to 700kW. This intensity could push operations into the region where electron cloud (e-cloud) generation could be observed and even cause instabilities. The POSINST simulation code was used to study how in- creasing beam intensities will affect electron cloud genera- tion. Threshold simulations show how the e-cloud density depend on the beam intensity and secondary electron yield (SEY) in the Main Injector (MI) and Recycler Ring (RR). | ||
![]() |
Poster TUPOB63 [1.542 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB63 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOA43 | Simulations of High Current Magnetic Horn Striplines at Fermilab | 792 |
|
||
Both the NuMI (Neutrinos and the Main Injector) beam line, that has been providing intense neutrino beams for several Fermilab experiments (MINOS, MINERVA, NOVA), and the newly proposed LBNF (Long Baseline Neutrino Facility) beam line, which plans to produce the highest power neutrino beam in the world for DUNE (the Deep Underground Neutrino Experiment), need pulsed magnetic horns to focus the mesons that decay to produce the neutrinos. The high-current horn and stripline design has been evolving as NuMI reconfigures for higher beam power and to meet the needs of the future LBNF program. We evaluated the two existing high-current striplines for NuMI and NOvA at Fermilab by producing Electromagnetic simulations of the magnetic horns and the required high-current striplines. In this paper, we present the comparison of these two designs using the ANSYS Electric and ANSYS Maxwell 3D codes with special attention on the critical stress points. These results are being used to support the development of evolving horn stripline designs to handle increased electrical current and higher beam power for NuMI upgrades and for the LBNF experiment. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA43 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPOA45 | Update of the SEY Measurement at Fermilab Main Injector | 1190 |
SUPO19 | use link to see paper's listing under its alternate paper code | |
|
||
Studies of in-situ Secondary electron yield (SEY) mea- surements of material samples at the Main Injector (MI) beam pipe wall location started in 2013. [2, 3] These studies aimed at understanding how the beam conditioning of differ- ent materials evolve if they function as MI vacuum chamber walls. The engineering run of the SEY measurement test stand was finished in 2014. From 2014 to 2016 the Fermilab accelerator intensity has increased from 24 × 1012 protons to 42 × 1012 protons. The beam conditioning effect on SS316L and TiN coated SS316L has been observed throughout this period. [1] Improvement of the data acquisition procedure and hardware has been performed. A deconditioning pro- cess was observed during the accelerator annual shut down in 2016. | ||
![]() |
Poster THPOA45 [3.113 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA45 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRA1CO05 | Progress of Gas-Filled Multi-RF-Cavity Beam Profile Monitor for Intense Neutrino Beams | 1275 |
|
||
Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795. A novel pressurized gas-filled multi-RF-cavity beam profile monitor has been studied that is simple and robust in high-radiation environments. Charged particles passing through each RF-cavity in the monitor produce intensity-dependent ionized plasma, which changes the gas permittivity. The sensitivity to beam intensity is adjustable using gas pressure and RF gradient. The performance of the gas-filled beam profile monitor has been numerically simulated to evaluate the sensitivity of permittivity measurements. The result indicates that the RF resonator will be useful to measure the beam profile with a charged beam intensity range from 106 to 1013 protons/bunch. The range covers the expected beam intensities in NuMI and LBNF. The demonstration of the monitor with intense proton beams are taken place at Fermilab to validate the simulation result. The result will be given in this presentation. |
||
![]() |
Slides FRA1CO05 [3.750 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-FRA1CO05 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |