Author: Brumund, P.M.
Paper Title Page
TUOPMA07 RF Fingers for the New ESRF-EBS Storage Ring 11
 
  • T. Brochard, P.M. Brumund, L. Goirand, J. Pasquaud, S.M. White
    ESRF, Grenoble, France
 
  In the new ESRF-EBS (Extremely Brilliant Source) storage ring vacuum chambers assembly, with a reduced aperture and the new omega shape, RF fingers are a key component to ensure good vacuum conditions and reach the best possible machine performance. As a result, dedicated efforts were put into producing a more compact more robust more reliable and easier to assemble RF finger design for the new machine. The work was done in parallel on the beam coupling impedance reduction, which have a direct impact on the electron beam lifetime, and on the mechanical aspect with FEA validation and geometry optimization. Many test have been made, in a mechanical laboratory, including high resolution 3D computed tomography images in order to measure the electrical contact, and also in the existing ESRF storage ring with the electron beam, to validate the final design before launching the series production  
slides icon Slides TUOPMA07 [7.516 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUOPMA07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPH08 Aluminium and Bimetallic Vacuum Chambers for the New ESRF Storage Ring (EBS) 36
 
  • F. Cianciosi, P.M. Brumund, L. Goirand
    ESRF, Grenoble, France
 
  The ESRF is proceeding with the design and procurement of its new low emittance storage ring EBS (Extremely Brilliant Source project). This completely new storage ring requires a new vacuum system including UHV chambers with complex shape and strict geometrical and dimensional tolerances. In order to meet these requirements we decided to build about half of the chambers in aluminum alloy machined from the bulk, the only technology permitting to respect the requirements. The result are 128 chambers, 2.5m long, built in alloy 2219 with Conflat flanges custom made from the chamber supplier by explosion bonding. The production phase is nearly finished, the produced chambers satisfy completely the expectations. A second generation of experimental aluminum chambers was designed as a substitution of some steel ones in order to solve same geometrical difficulties. These chambers are very complex as they have steel-aluminum junctions in the body in order to accommodate bellows and beam position monitor buttons. The delivery of the first prototype of this type of chamber is previewed for June 2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH08  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FROAMA07 ESRF Double Crystal Monochromator Prototype Project 440
 
  • R. Baker, D. Baboulin, R. Barrett, P. Bernard, G. Berruyer, J. Bonnefoy, M. Brendike, P.M. Brumund, Y. Dabin, L. Ducotté, H. Gonzalez, G. Malandrino, P. Marion, O. Mathon, T. Roth, R. Tucoulou
    ESRF, Grenoble, France
 
  Spectroscopy beamlines at the ESRF are equipped with a generic model of double crystal monochromator, originally acquired in the 1990's. After over 15 years of continuous service, their conception, although pioneering 20 years ago, can no longer meet the challenge of present and future scientific goals in terms of position and angular stability, thermal stability, cooling system, vibration, control and feedback, particularly in view of the ESRF - EBS upgrade. Considering the above issues, a feasibility phase was launched to develop a prototype DCM dedicated to future spectroscopy applications at the ESRF. Specifications : derived from expected performance of the EBS upgrade and scientific objectives - are extremely challenging, especially in terms of mechanical and thermal stability and impose the adoption of several innovative design strategies. The prototype is currently in the assembly phase and tests of the complete system are planned before the end of 2018. An overview of the DCM prototype project will be given, including specifications, major design options implemented and various validated concepts. Current project status and first test results will also be presented.  
slides icon Slides FROAMA07 [24.528 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-FROAMA07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)