Keyword: target
Paper Title Other Keywords Page
MOPE15 Cam Mover Alignment System Positioning with Wire Position Sensor Feedback for CLIC ion, alignment, controls, electron 32
 
  • J. Kemppinen, Z.S. Kostka, H. Mainaud Durand
    CERN, Geneva, Switzerland
  • J. Kemppinen
    ETH, Zurich, Switzerland
 
  Compact Linear Collider (CLIC) is a study of an electron-positron collider with nominal energy of 3 TeV and luminosity of 2·1034 cm-2·s-1. The luminosity goal leads to stringent alignment requirements for single quadrupole magnets. Vertical and lateral offset deviations with regards to a given orbit reference in both ends of a quadrupole shall be below 1 µm and quadrupole roll deviation shall be below 100 µrad. Translation in the direction of particle beam is not controlled but mechanically locked. A parallel kinematic platform based on cam movers was chosen as system for detailed studies. Earlier studies have shown that cam movers can reach the CLIC requirements through an iterative process. The paper presents new modular off-the-shelf control electronics and software including three optional positioning algorithms based on iterations as well as a more advanced algorithm which can reach target position in one movement. The advanced algorithm reads wire position sensors (WPS), calculates quadrupole orientation based on the readings and updates the remaining trajectory during motion. All of the optional positioning methods reach the CLIC positioning requirements within minutes.  
poster icon Poster MOPE15 [0.425 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE15  
About • paper received ※ 09 September 2016       paper accepted ※ 14 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE12 Developing White Beam Components of TPS Beamline 24A ion, simulation, shielding, laser 183
 
  • M.H. Lee, C.Y. Chang, C.H. Chang, S.H. Chang, C. Chen, C.C. Chiu, L. Huang, L. Lai, L. Lee, D.G. Liu, Y. Su, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
 
  The TPS 24A, Soft X-ray Tomography (SXT) beamline, is one of the beamlines in the second construction phase at the Taiwan Photon Source (TPS). This bending magnet (BM) beamline has high flux in the range between 260 eV and 2600 eV. It is designed for transmission full-field imaging of frozen-hydrated biological samples. At the exit slit, the beam flux optimized in 520 eV is 282 billion photons/second with resolving power 2000, the beam size is 0.05 mm × 0.06 mm (V × H, FWHM) and the beam divergence is 1.73 mrad × 1.57 mrad (V × H, FWHM). By contributions of the generic beamline components project in recent years, modular mechanisms would be used in this beamline such as mask, X-ray beam position monitor (XBPM), photon absorber (PAB), and screens. However, these beamline components were designed for ID beamlines, so they should be redesigned for BM beamlines. This paper generally introduce these beamline components decided and redesigned for the TPS 24A. They will play important roles at the BM beam-lines in the future.  
poster icon Poster TUPE12 [1.355 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE12  
About • paper received ※ 09 September 2016       paper accepted ※ 22 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)