Keyword: pick-up
Paper Title Other Keywords Page
MOPO093 A Study of a Cooling Configuration for an OFHC Copper Rebuncher cavity, simulation, linac, vacuum 200
 
  • O. Mazor, M. Bukai, D. Nusbaum, J. Rodnizki
    Soreq NRC, Yavne, Israel
  • E. Dyunin
    Ariel University, Ariel, Israel
  • G. Ziskind
    Ben-Gurion University in the Negev, Beer Sheva, Israel
 
  Funding: Pazy Fund (Israel Atomic Energy commission) https://pazy.org.il
A four gap OFHC copper rebuncher is developed at SNRC as a research study and a risk reduction for the MEBT of SARAF Phase II proton/ deuteron linac. The rebuncher is designed to bunch a 5 mA CW beam at 176 MHz. The required cavity voltage according to beam dynamics evaluation is 150 kV with a beam aperture diameter of 40 mm at a beam energy of 1.3 MeV/u with a Q value of 8000. Considering utilizing this cavity for enhancing the beam energy, the cooling configuration is explored for a cavity voltage of 300 kV, consuming 20 kW dissipated power, at a peak electric field of 16 MV/m, equivalent to the Kilpatrick limit. The electro magnetic study conducted with the CST RF simulation package was reproduced at ANSYS HFSS. The simulated dissipated power along the rebuncher for 20 kW forward power injected through the coupler port with the HFSS driven model were assigned to the ANSYS Fluent model to explore the resulted temperature map. Several evolved cooling configurations were studied, including cooling of the drift tubes. In this configuration the temperature rise along the cavity is in the range of 30 K. A detailed design of the four gap rebuncher is following this study.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-MOPO093  
About • paper received ※ 03 September 2018       paper accepted ※ 22 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO020 Microphonics Investigation of ARIEL e-Linac Cryomodules cavity, cryomodule, damping, linac 370
 
  • Y. Ma, K. Fong, M. Keikha, J.J. Keir, D. Kishi, S.R. Koscielniak, D. Lang, R.E. Laxdal, R.R. Nagimov, Z.Y. Yao, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
  • L. Lilje
    DESY, Hamburg, Germany
 
  Now the stage of the 30MeV portion of ARIEL (The Advanced Rare Isotope Laboratory) e-Linac is under commissioning which includes an injector cryomodule (ICM) and the 1st accelerator cryomodule (ACM1) with two cavities configuration. In this paper, the progress of the microphonics investigation and suppression of ICM and ACM1 is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO020  
About • paper received ※ 12 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO031 Investigation of the Surface Resistance of Niobium Between 325 MHz and 1300 MHz Using a Coaxial Half-wave Cavity cavity, SRF, niobium, electromagnetic-fields 395
 
  • H. Park, S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
 
  The Center for Accelerator Science at Old Dominion University has built a half-wave coaxial cavity (*) to measure the surface resistance of niobium as a function of frequency, temperature, rf field, preparation techniques, over a wide range of frequencies of interest for particle accelerators. The characteristics of the half-wave coaxial cavity provide these information on a same surface. The preliminary results showed clearly the frequency dependence of residual surface resistance (**). After establishing baseline, we have conducted a study of low temperature baking effect on the surface resistance under controlled environment. This paper will describe the details of the test procedure, results and we will explore underlying physics of the phenomenon.
* H. Park et al., MOPB003, Proc. SRF2015, http://jacow.org/
** H. Park et al., THPB080, Proc. SRF2017, http://jacow.org/
 
slides icon Slides TUPO031 [0.966 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO031  
About • paper received ※ 17 September 2018       paper accepted ※ 08 October 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO052 Design Study of a Prototype 325MHz RF Power Coupler for Superconducting Cavity simulation, cavity, superconducting-cavity, resonance 451
 
  • J.Y. Yoon, J.B. Bhang, H.J. Cha, S.W. Jang, E.-S. Kim, K.R. Kim, C.S. Park, S. H. Park
    Korea University Sejong Campus, Sejong, Republic of Korea
  • E. Kako
    KEK, Ibaraki, Japan
  • D.Y. Kim, J. Lee
    Vitzrotech Co., Ltd., Ansan City, Kyunggi-Do, Republic of Korea
  • I. Shin
    IBS, Daejeon, Republic of Korea
 
  Funding: Korea University (Sejong Campus) in South KOREA
We present design studies of a prototype RF input power coupler, which provides RF powers to 325MHz cavities up to 18.5 kW in CW mode. The prototype power coupler is a coaxial capacitive type with single ceramic window. In order to optimize the RF coupler design, we performed multi-physics simulations, including electromagnetic, thermal, and mechanical analyses.
 
poster icon Poster TUPO052 [1.607 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO052  
About • paper received ※ 12 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPO106 Mathematical Principle and Numerical Reconstruction in Real Space Measurement with a Rotating BPM diagnostics, beam-diagnostic, emittance, instrumentation 560
 
  • P. Jiang, Y. He, Z.J. Wang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  It is difficult to measure beam profiles and monitor the beam during beam supply for high intensity high power accelerators. Based on the button pick-ups, the mathematical principle of a rotating BPM is proposed. SVD method is used to reconstruct the beam in x-y real space, and the basic parameters used in beam reconstruction are argued. The beam distribution in x-y real space is reconstructed well and compared to the reference beam. The beam reconstruction is sensitive to the electrode radius. The meshing and the grid numbers in the solution window have an import effect on the beam reconstruction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-TUPO106  
About • paper received ※ 12 September 2018       paper accepted ※ 19 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO068 AN Effect of Field Emission on Low Beta Superconducting Cavities cavity, SRF, linac, simulation 849
 
  • X. Liu, Z. Gao, Y. He, G. Huang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Superconducting RF (SRF) technology is widely ap-plied in particle accelerators to shorten the accelerator length and lower the construction price due to its high acceleration gradients with low rf losses. Field emission is the chief limitation associated with the surface electric field which will finally determine the cavity performance during the operation. The pickup-drop signal caused by field emission seriously affect the stable operation of the superconducting linac in the Chinese initiative Accelera-tor-Driven Sub-critical System (CiADS) demon facility. Simulations of the field emission effect and experimental measurements of the pickup-drop signal have been per-formed on the half wavelength resonator (HWR) cavity. And a modified design of the pickup antenna will be discussed to solve the pickup-drop problem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO068  
About • paper received ※ 12 September 2018       paper accepted ※ 09 October 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPO111 The Test of RF Breakdowns of CPHS RFQ rfq, linac, simulation, proton 931
 
  • W.B. Ye, C. Cheng, X. Guan, J. Shi, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • M.C. Wang
    NINT, Shannxi, People’s Republic of China
 
  The high accelerating gradient is significant for a compact linear accelerator, and RF breakdowns is a limitation for the high gradient. This work aims to research RF breakdowns of a 325MHz proton Radio Frequency Quadrupole (RFQ) accelerator of the Compact Pulsed Hadron Source(CPHS). The breakdown rate (BDR) of the RFQ has been measured. Breakdown waveforms have been recorded, which have been used for counting breakdown time distribution and analyzing the location of RF breakdowns.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2018-THPO111  
About • paper received ※ 12 September 2018       paper accepted ※ 20 September 2018       issue date ※ 18 January 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)