Author: Palmer, R.B.
Paper Title Page
TUPAB040 Design Concept for the Second Interaction Region for Electron-Ion Collider 1435
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, A. Hutton, F. Lin, T.J. Michalski, V.S. Morozov, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, A.V. Sy, C. Weiss, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 and Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The pos­si­bil­ity of two in­ter­ac­tion re­gions (IRs) is a de­sign re­quire­ment for Elec­tron-Ion Col­lider (EIC). There is also a sig­nif­i­cant in­ter­est from the nu­clear physics com­mu­nity to have a 2nd IR with mea­sure­ment ca­pa­bil­i­ties com­ple­men­tary to those of the 1st IR. While the 2nd IR will be in op­er­a­tion over the en­tire en­ergy range of ~20GeV to ~140GeV cen­ter of mass (CM). The 2nd IR can also pro­vide an ac­cep­tance cov­er­age com­ple­men­tary to that of the 1st. In this paper, we pre­sent a brief overview and the cur­rent progress of the 2nd IR de­sign in terms of the pa­ra­me­ters, mag­net lay­out, and beam dy­nam­ics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB040  
About • paper received ※ 24 May 2021       paper accepted ※ 31 August 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB002 The Interaction Region of the Electron-Ion Collider EIC 2574
 
  • H. Witte, J. Adam, M. Anerella, E.C. Aschenauer, J.S. Berg, M. Blaskiewicz, A. Blednykh, W. Christie, J.P. Cozzolino, K.A. Drees, D.M. Gassner, K. Hamdi, C. Hetzel, H.M. Hocker, D. Holmes, A. Jentsch, A. Kiselev, P. Kovach, H. Lovelace III, Y. Luo, G.J. Mahler, A. Marone, G.T. McIntyre, C. Montag, R.B. Palmer, B. Parker, S. Peggs, S.R. Plate, V. Ptitsyn, G. Robert-Demolaize, C.E. Runyan, J. Schmalzle, K.S. Smith, S. Tepikian, P. Thieberger, J.E. Tuozzolo, F.J. Willeke, Q. Wu, Z. Zhang
    BNL, Upton, New York, USA
  • B.R. Gamage, T.J. Michalski, V.S. Morozov, M.L. Stutzman, W. Wittmer
    JLab, Newport News, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
This paper pre­sents an overview of the In­ter­ac­tion Re­gion (IR) de­sign for the planned Elec­tron-Ion Col­lider (EIC) at Brookhaven Na­tional Lab­o­ra­tory. The IR is de­signed to meet the re­quire­ments of the nu­clear physics com­mu­nity *. The IR de­sign fea­tures a ±4.5 m free space for the de­tec­tor; a for­ward spec­trom­e­ter mag­net is used for the de­tec­tion of hadrons scat­tered under small an­gles. The hadrons are sep­a­rated from the neu­trons al­low­ing de­tec­tion of neu­trons up to ±4 mrad. On the rear side, the elec­trons are sep­a­rated from pho­tons using a weak di­pole mag­net for the lu­mi­nos­ity mon­i­tor and to de­tect scat­tered elec­trons (e-tag­ger). To avoid syn­chro­tron ra­di­a­tion back­grounds in the de­tec­tor no strong elec­tron bend­ing mag­net is placed within 40 m up­stream of the IP. The mag­net aper­tures on the rear side are large enough to allow syn­chro­tron ra­di­a­tion to pass through the mag­nets. The beam pipe has been op­ti­mized to re­duce the im­ped­ance; the total power loss in the cen­tral vac­uum cham­ber is ex­pected to be less than 90 W. To re­duce risk and cost the IR is de­signed to em­ploy stan­dard NbTi su­per­con­duct­ing mag­nets, which are de­scribed in a sep­a­rate paper.
* An Assessment of U.S.-Based Electron-Ion Collider Science. (2018). Washington, D.C.: National Academies Press. https://doi.org/10.17226/25171
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB002  
About • paper received ※ 18 May 2021       paper accepted ※ 25 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB003 Overview of the Magnets Required for the Interaction Region of the Electron-Ion Collider (EIC) 2578
 
  • H. Witte, K. Amm, M. Anerella, J. Avronsart, A. Ben Yahia, J.P. Cozzolino, R.C. Gupta, H.M. Hocker, P. Kovach, G.J. Mahler, A. Marone, R.B. Palmer, B. Parker, S.R. Plate, C.E. Runyan, J. Schmalzle
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The planned elec­tron-ion col­lider (EIC) at Brookhaven Na­tional Lab­o­ra­tory (BNL) is de­signed to de­liver a peak lu­mi­nos­ity of 1x1034 cm-2 s-1. This paper pre­sents an overview of the mag­nets re­quired for the in­ter­ac­tion re­gion of the BNL EIC. To re­duce risk and cost the IR is de­signed to em­ploy con­ven­tional NbTi su­per­con­duct­ing mag­nets. In the for­ward di­rec­tion the mag­nets for the hadrons are re­quired to pass a large neu­tron cone and par­ti­cles with a trans­verse mo­men­tum of up to 1.3 GeV/c, which leads to large aper­ture re­quire­ments. In the rear di­rec­tion the syn­chro­tron ra­di­a­tion fan pro­duced by the elec­tron beam must not hit the mag­net aper­tures, which de­ter­mines their aper­ture. For the for­ward di­rec­tion a mostly in­ter­leaved scheme is used for the op­tics, whereas for the rear side 2-in-1 mag­nets are em­ployed. We pre­sent an overview of the EIC IR mag­net de­sign in­clud­ing the for­ward spec­trom­e­ter mag­net B0.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB003  
About • paper received ※ 18 May 2021       paper accepted ※ 01 July 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The de­sign of the elec­tron-ion col­lider EIC to be con­structed at Brookhaven Na­tional Lab­o­ra­tory has been con­tin­u­ously evolv­ing to­wards a re­al­is­tic and ro­bust de­sign that meets all the re­quire­ments set forth by the nu­clear physics com­mu­nity in the White Paper. Over the past year ac­tiv­i­ties have been fo­cused on ma­tur­ing the de­sign, and on de­vel­op­ing al­ter­na­tives to mit­i­gate risk. These in­clude im­prove­ments of the in­ter­ac­tion re­gion de­sign as well as mod­i­fi­ca­tions of the hadron ring vac­uum sys­tem to ac­com­mo­date the high av­er­age and peak beam cur­rents. Beam dy­nam­ics stud­ies have been per­formed to de­ter­mine and op­ti­mize the dy­namic aper­ture in the two col­lider rings and the beam-beam per­for­mance. We will pre­sent the EIC de­sign with a focus on re­cent de­vel­op­ments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB028 Beam-Beam Related Design Parameter Optimization for the Electron-Ion Collider 3808
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The de­sign lu­mi­nos­ity goal for the Elec­tron-Ion Col­lider (EIC) is 1e34 cm-2s−1. To achieve such a high lu­mi­nos­ity, the EIC de­sign adopts high bunch in­ten­si­ties, flat beams at the in­ter­ac­tion point (IP) with a small ver­ti­cal β*-func­tion, and a high col­li­sion fre­quency, to­gether with crab cav­i­ties to com­pen­sate the geo­met­ri­cal lu­mi­nos­ity loss due to the large cross­ing angle of 25m­rad. In this ar­ti­cle, we pre­sent our strate­gies and ap­proaches to ob­tain the de­sign lu­mi­nos­ity by op­ti­miz­ing some key beam-beam re­lated de­sign pa­ra­me­ters. Through our ex­ten­sive strong-strong and weak-strong beam-beam sim­u­la­tions, we found that beam flat­ness, elec­tron and pro­ton beam size match­ing at the IP, elec­tron and pro­ton work­ing points, and syn­chro-be­ta­tron res­o­nances aris­ing from the cross­ing angle col­li­sion play a cru­cial role in pro­ton beam size growth and lu­mi­nos­ity degra­da­tion. After op­ti­miz­ing those pa­ra­me­ters, we found a set of beam-beam re­lated de­sign pa­ra­me­ters to reach the de­sign lu­mi­nos­ity with an ac­cept­able beam-beam per­for­mance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB028  
About • paper received ※ 17 May 2021       paper accepted ※ 28 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB029 Dynamic Aperture Evaluation for the Hadron Storage Ring in the Electron-Ion Collider 3812
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) is aim­ing at a de­sign lu­mi­nos­ity of 1e34 cm-2s−1. To main­tain such a high lu­mi­nos­ity, both beams in the EIC need an ac­cept­able beam life­time in the pres­ence of the beam-beam in­ter­ac­tion. For this pur­pose, we car­ried out weak-strong el­e­ment-by-el­e­ment par­ti­cle track­ing to eval­u­ate the long-term dy­namic aper­ture for the hadron ring lat­tice de­sign. We im­proved our sim­u­la­tion code Sim­Track to treat some new lat­tice de­sign fea­tures, such as ra­di­ally off­set on-mo­men­tum or­bits, co­or­di­nate trans­for­ma­tions in the in­ter­ac­tion re­gion, etc. In this ar­ti­cle, we will pre­sent the pre­lim­i­nary dy­namic aper­ture cal­cu­la­tion re­sults with β*- func­tion scan, ra­dial orbit shift, cross­ing angle col­li­sion, and mag­netic field er­rors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB029  
About • paper received ※ 17 May 2021       paper accepted ※ 01 September 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)