MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T22 Reliability and Operability
Paper Title Page
THYYPLS3 A Remote-Controlled Robot-Car in the TPS Tunnel 3435
 
  • T.Y. Lee, B.Y. Chen, T.W. Hsu, B.Y. Huang, C.H. Kuo, W.Y. Lin
    NSRRC, Hsinchu, Taiwan
 
  A remote-controlled robot-car named ’PhotonBot’ was put into the TPS accelerator tunnel and is equipped with a 360 degrees LiDAR for SLAM and navigation, two cameras for perception and first-person view, and a thermal imaging system. The robot can be remotely controlled and can send data to a remote PC through Wi-Fi. With SLAM, it can go more freely without being restricted to a designated path. In order to ensure it can work continuously, there is a wireless charging station in case of a low battery.  
slides icon Slides THYYPLS3 [18.013 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLS3  
About • paper received ※ 09 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPGW096 CERN Accelerator Operation’s Planning Manager and Dashboard 3792
 
  • E. Matli, T. Hesselberg, J.N. Nielsen
    CERN, Geneva, Switzerland
  • T. Hesselberg
    NTNU, Trondheim, Norway
 
  Running CERN complex of accelerators and infrastructure requires the seamless collaboration of many people, such as operators, experts and people-on-call to name only a few. Distributed in teams from different groups, it is important to centralise schedule planning and operational information and make this information readily available. In BE/OP these tasks are handled by two applications to manage shift work as well as piquet and expert services. At the beginning of 2018, a project was started to replace the ageing web piquet application. While collecting requirements we realised a more flexible application was needed to suit a broader set of customers, and to offer a more generic, people- oriented tool. The new planning tool consists of two separate applications: The Planning Manager, which is used to organise work schedules of a teams members, and to keep each group’s planning up-to-date, coherently, and visible to all involved. The Planning Dashboard, which allows any user to create a customised view of the available services they use.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW096  
About • paper received ※ 02 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB003 Automatic Classification of Post Mortem Data for Reduced Beam Down Time 3799
 
  • M.C. Chalmers, Y.E. Tan
    AS - ANSTO, Clayton, Australia
 
  Time spent recovering from faults that result in a rapid loss of stored current (a total beam loss event) can be costly to the Australian Synchrotron facility and its researchers. The identification of a fault leading to total beam loss is assisted by a large variety of investigative tools for specific tasks, but they do not often give a thorough overview of all systems required to store beam. Post mortem data uniquely provides insight into how the beam was behaving at the specific time the dump occurred. With machine learning, we find that we can automatically and rapidly identify many types of total beam loss events by learning about the unique characteristics in the post mortem files.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB003  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB072 Operational Experience of a Prototype LHC Injection Kicker Magnet with a Low SEY Coating and Redistributed Power Deposition 3974
 
  • M.J. Barnes, C. Bracco, G. Bregliozzi, A. Chmielinska, L. Ducimetière, B. Goddard, G. Iadarola, T. Kramer, V. Vlachodimitropoulos, W.J.M. Weterings
    CERN, Geneva, Switzerland
  • A. Chmielinska
    EPFL, Lausanne, Switzerland
  • L. Vega Cid
    ETSII UPM, Madrid, Spain
 
  Funding: This research was supported by the HL-LHC project
In the event that it is necessary to exchange an LHC injection kicker magnet (MKI), the newly installed kicker magnet would limit HL-LHC operation for a few hundred hours due to dynamic vacuum activity. A surface coating with a low secondary electron yield, applied to the inner surface of an alumina tube to reduce dynamic vacuum activity without increasing the probability of UFOs, and which is compatible with the high voltage environment, was included in a prototype MKI installed in the LHC during the 2017-18 Year End Technical Stop. In addition, this MKI included an upgrade to relocate a significant portion of beam induced power from the yoke to a ’damping element’: this element is not at pulsed high voltage. The effectiveness of the upgrades has been demonstrated during LHC operation, hence a future version will include water cooling of this ’damping element’. This paper reviews dynamic vacuum around the MKIs and summarizes operational experience of the upgraded MKI.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB072  
About • paper received ※ 08 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB117 Stability and Reliability Issues of PAL-XFEL Modulator 4096
 
  • S.H. Kim, H.-S. Kang, K.H. Kim, H.-S. Lee, C.-K. Min, S.S. Park, Y.J. Park
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This work is supported by Ministry of Science, ICT(Information/Communication Technology) and Future Planning.
The Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL) employs 51 units of the pulse modulator in order to obtain the 10 GeV electron beam, which drive one X-band to linearize and 50 S-band klystrons. The PAL-XFEL requires very tight control of the klystron RF phase jitter 0.03-degree for S-band RF, 0.1-degree for X-band RF and the beam voltage stability of below 50 ppm. The RF phase jitter is directly related to the amplitude stability of modulator output pulses. There are several factors to satisfy the stability and reliability for the PAL-XFEL modulator. The largest sources of pulse-to-pulse instability are a current charging power supply (CCPS) for PFN charging, a thyratron switch, and a klystron focusing magnet power supply (MPS). In this paper, the operation and debugging results of those devices are described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB117  
About • paper received ※ 16 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)