Keyword: magnet-design
Paper Title Other Keywords Page
WEPMF018 Magnet Designs for the eRHIC Rapid Cycling Synchrotron dipole, quadrupole, sextupole, synchrotron 2404
 
  • H. Witte, I. Marneris, V.H. Ranjbar
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Presently the electron-ion collider eRHIC is under design, which aims to provide a facility with a peak luminosity of 1034cm-2sec-1. Part of the eRHIC design is a rapid cycling synchrotron, which accelerates electrons from 1-18 GeV. In this paper we present conceptual designs of the required dipole, quadrupole and sextupole magnets. The magnets meet the specifications in terms of performance and field quality with an acceptable power dissipation. The power supply requirements are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF072 Magnet Power Supplies for ALS-U power-supply, storage-ring, dipole, sextupole 2538
 
  • G.C. Pappas, J.-Y. Jung, C.A. Swenson
    LBNL, Berkeley, California, USA
 
  The ALS-U project is an upgrade to the existing Advanced Light Source at Lawrence Berkeley Laboratory to a diffraction limited light source. To be able to achieve the small horizontal emittance of the ALS-U, the three bend achromats in the ALS will be replaced with nine bend achromats. Because the lifetime of the ALS-U beam will be significantly reduced, the plan is to use a swap out injection scheme between the storage ring and a new accumulator ring. The present plan is to use individual power supplies for each magnet in the storage ring, and series connected magnet strings for the accumulator ring. The sheer number of supplies needed, along with the tighter stability requirements for the ALS-U, is demanding in terms of the power supply requirements for stability and reliability. This paper will discuss the ALS-U magnet power supply requirements, and possible options to meet them.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML026 Large-Aperture High-Field Nb3Sn Dipole Magnets dipole, collider, luminosity, operation 2738
 
  • A.V. Zlobin, V.V. Kashikhin, I. Novitski
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
Large-aperture high-field dipole magnets based on Nb3Sn superconductor are necessary for various accelerator systems of future hadron and muon colliders. In hadron colliders, they are used needed for beam separation before and after interaction points. In a muon collider, they are considered for both the arc and the interaction regions to provide room for internal absorbers protecting magnets from the muon decay products. These magnets can also be used in test facilities to produce a background magnetic field for testing conductor samples or insert coils. High level of magnetic field and large aperture size lead to large Lorentz forces and mechanical strains and stresses which can damage brittle Nb3Sn coils. This paper describes conceptual designs of 120-mm aperture dipoles with magnetic fields up to 15 T based on cos-theta coils. Stress management technique and magnet parameters are also presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML027 Conceptual Design of a 17 T Nb3Sn Accelerator Dipole Magnet dipole, collider, luminosity, quadrupole 2742
 
  • A.V. Zlobin, J.R. Carmichael, V.V. Kashikhin, I. Novitski
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
Nb3Sn dipole magnets with a nominal field of 16 T and sufficient operation margins are being considered for the LHC energy upgrade or a future Very High Energy Hadron Collider. Magnet design studies are being performed in the framework of the US Magnet Development Program to explore the limits of the Nb3Sn accelerator magnet technology and feasibility of such magnets, as well as to optimize the magnet design, performance parameters and cost. This paper describes the conceptual design of a 17 T dipole magnet with 60 mm aperture and 4-layer cos-theta coil being developed at Fermilab. The results of magnetic and mechanical analyses, including the non-linear effects in magnetic field and the possible stress management techniques, are also presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)