Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPHA086 | The Design of Experimental Performance Analysis and Visualization System | experiment, data-analysis, database, laser | 409 |
|
|||
The analysis of experimental performance is an essential task to any experiment. With the increasing demand on experimental data mining and utilization. methods of experimental data analysis abound, including visualization, multi-dimensional performance evaluation, experimental process modeling, performance prediction, to name but a few. We design and develop an experimental performance analysis and visualization system, consisting of data source configuration component, algorithm management component, and data visualization component. It provides us feasibilities such as experimental data extraction and transformation, algorithm flexible configuration and validation, and multi-views presentation of experimental performance. It will bring great convenience and improvement for the analysis and verification of experimental performance. | |||
![]() |
Poster MOPHA086 [0.232 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA086 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUBPL01 | Automatic Web Application Generation From an Irradiation Experiment Data Management Ontology (IEDM) | radiation, experiment, interface, operation | 687 |
|
|||
Funding: This project has received funding from the European Union’s Horizon 2020 Research and Innovation program under Grant Agreement no. 654168 Detectors and electronic components in High-Energy Physics experiments are nowadays often exposed to harsh radiation environments. Thus, to insure reliable operation over time, their radiation tolerance must be assessed beforehand through dedicated testing experiments in irradiation facilities. To prevent data loss and perform accurate experiments, these facilities need to rely upon a proper data management system. In prior work, we provided a formal description of the key concepts involved in the data management of irradiation experiments using an ontology (IEDM)*. In this work, we show how this formalisation effort has a practical by-product via the introduction of an ontology-based methodology for the automatic generation of web applications, using IEDM as a use case. Moreover, we also compare this IEDM-generated web application to the IRRAD Data Manager (IDM), the manually developed web application used for the data handling of the CERN Proton Irradiation facility (IRRAD). Our approach should allow irradiation facility teams to gain access to state-of-the-art data management tools without incurring significant software development effort. *Gkotse, B., Jouvelot, P., Ravotti, F.: IEDM: An Ontology for Irradiation Experiments Data Management. In: Extended Semantic Web Conference 2019, accepted in Posters and Demos. http://cern.ch/iedm |
|||
![]() |
Slides TUBPL01 [10.183 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPL01 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 21 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEMPL009 | Tracking APS-U Production Components With the Component Database and eTraveler Applications | database, controls, photon, software | 1026 |
|
|||
Funding: Argonne National Laboratory’s work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357 The installation of the APS-U has a short schedule of one year, making it imperative to be well prepared before the installation process begins. The Component Database (CDB) has been designed to help in documenting and tracking all the components for APS-U. Two new major domains, Machine Design domain and Measurement and Analysis Archive (MAARC) domain, have been added to CDB to further its ability in exhaustively documenting components. The Machine Design domain will help define the purpose of all the components in the APS-U design and the MAARC domain allows association of components with collected data. The CDB and a traveler application from FRIB have been integrated to help with documenting various processes performed, such as inspections and maintenance. Working groups have been formed to define appropriate work flow processes for receiving components, using the tools to document receiving inspection and QA requirements. The applications are under constant development to perform as expected by the working groups. Over some time, especially after production procurement began, the CDB has seen more and more usage in order to aid in preparation for the APS-U installation. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPL009 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||