Author: Scalamera, G.
Paper Title Page
MOPHA044 Development of Ethernet Based Real-Time Applications in Linux Using DPDK 297
 
  • G. Gaio, G. Scalamera
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  In the last decade Ethernet has become the most popular way to interface hardware devices and instruments to the control system. Lower cost per connection, reuse of existing network infrastructures, very high data rates, good noise rejection over long cables and finally an easier maintainability of the software in the long term are the main reasons of its success. In addition, the need of low latency systems of the High Frequency Trading community has boosted the development of new strategies, such as CPU isolation, to run real-time applications in plain Linux with a determinism of the order of microseconds. DPDK (Data Plane Development Kit), an open source software solution mainly sponsored by Intel, addresses the request of high determinism over Ethernet by bypassing the network stack of Linux and providing a more friendly framework to develop tasks which are even able to saturate a 100 Gbit connection. Benchmarks regarding the real-time performance and preliminary results of employing DPDK in the acquisition of beam position monitors for the fast orbit feedback of the Elettra storage ring will be presented.  
poster icon Poster MOPHA044 [2.626 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA044  
About • paper received ※ 29 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA020 Pushing the Limits of Tango Archiving System using PostgreSQL and Time Series Databases 1116
 
  • R. Bourtembourg, S. James, J.L. Pons, P.V. Verdier
    ESRF, Grenoble, France
  • G. Cuní, S. Rubio-Manrique
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • M. Di Carlo
    INAF - OAAB, Teramo, Italy
  • G.A. Fatkin, A.I. Senchenko, V. Sitnov
    NSU, Novosibirsk, Russia
  • G.A. Fatkin, A.I. Senchenko, V. Sitnov
    BINP SB RAS, Novosibirsk, Russia
  • L. Pivetta, C. Scafuri, G. Scalamera, G. Strangolino, L. Zambon
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The Tango HDB++ project is a high performance event-driven archiving system which stores data with micro-second resolution timestamps, using archivers written in C++. HDB++ supports MySQL/MariaDB and Apache Cassandra backends and has been recently extended to support PostgreSQL and TimescaleDB*, a time-series PostgreSQL extension. The PostgreSQL backend has enabled efficient multi-dimensional data storage in a relational database. Time series databases are ideal for archiving and can take advantage of the fact that data inserted do not change. TimescaleDB has pushed the performance of HDB++ to new limits. The paper will present the benchmarking tools that have been developed to compare the performance of different backends and the extension of HDB++ to support TimescaleDB for insertion and extraction. A comparison of the different supported back-ends will be presented.
https://timescale.com
 
poster icon Poster WEPHA020 [1.609 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA020  
About • paper received ※ 30 September 2019       paper accepted ※ 02 November 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA097 Development of a Tango Interface for the Siemens-Based Control System of the Elettra Infrastructure Plants 1321
 
  • P. Michelini, I. Ferigutti, F. Giacuzzo, M. Lonza, G. Scalamera, G. Strangolino, M. Trevi
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The control system of the Elettra Sincrotrone Trieste infrastructure plants (cooling water, air conditioning, electricity, etc.) consists of several Siemens PLCs connected by an Ethernet network and a number of management stations running the Siemens Desigo software for high-level operation and monitoring, graphical display of the process variables, automatic alarm distribution and a wide range of different data analysis features. No external interface has been realized so far to connect Desigo to the Elettra and FERMI accelerator control systems based on Tango, making it difficult for the control room operators to monitor the conventional plant operation and parameters (temperature, humidity, water pressure, etc.), which are essential for the accelerator performance and reliability. This paper describes the development of a dedicated Desigo application to make selected process variables externally visible to a specific Tango device server, which then enables the use of all the tools provided by this software framework to implement graphical interfaces, alarms, archiving, etc. New proposals and developments to expand and improve the system are also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA097  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)