Author: Gofron, K.J.
Paper Title Page
WEMPL007 EPICS Controlled Wireless Sensors 1015
WEPHA173   use link to see paper's listing under its alternate paper code  
 
  • M.T. Rolland
    Stony Brook University, Computer Science Department, Stony Brook, New York, USA
  • K.J. Gofron
    BNL, Upton, New York, USA
 
  At the trade-off of power, wireless technologies are much more portable and convenient than their wired counterparts. This is especially true in the scientific sphere, where many environmental factors must be recorded at all times at as many locations as possible. Using these technologies, scientists can often reduce cost while maximizing the number of sensors without compromising sensor quality. To this end, we have developed EPICS controllers for both Bluetooth Low Energy (BLE) sensors and XBee ZigBee sensors. For BLE, we chose the Nordic Thingy:52 for its low cost, high battery life, and impressive range of sensors. The controller we developed combines EPICS base functions, the Bluetooth generic attribute data structure library, and multithreading techniques to enable real-time broadcast of the Thingy’s 20+ sensors’ live values. Because BLE is limited in range, we also developed a controller for the XBee sensor which, through the ZigBee mesh protocol, can expand its range through each node added into the network. With these controllers, NSLS-II scientists will have access to a whole new class of sensors which are both easier to deploy and cheaper than their wired predecessors.  
slides icon Slides WEMPL007 [1.569 MB]  
poster icon Poster WEMPL007 [1.589 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPL007  
About • paper received ※ 01 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA174 ADUVC - an EPICS Areadetector Driver for USB Video Class Devices 1492
 
  • J. Wlodek
    Stony Brook University, Computer Science Department, Stony Brook, New York, USA
  • K.J. Gofron
    BNL, Upton, New York, USA
 
  Most devices supported by EPICS areaDetector fall under one of two categories: detectors and cameras. Many of the cameras in this group can be classified as industrial cameras, and allow for fine control of exposure time, gain, frame rate, and many other image acquisition parameters. This flexibility can come at a cost however, with most such industrial cameras’ prices starting near one thousand dollars, with the price rising for cameras with more features and better hardware. While these prices are justified for situations that require a large amount of control over the camera, for monitoring tasks and some basic data acquisition the use of consumer devices may be sufficient while being far less cost-prohibitive. The solution we developed was to write an areaDetector driver for USB Video Class (UVC) devices, which allows for a variety of cameras and webcams to be used through EPICS and areaDetector, with most costing under $100.  
poster icon Poster WEPHA174 [1.658 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA174  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)