
EPICS CONTROLLED WIRELESS SENSORS

M. Rolland1, K. J. Gofron†, Brookhaven National Laboratory, Upton, USA
1also at Stony Brook University, Stony Brook, USA

Abstract

For sensor application, wireless technologies are more
portable and convenient than their wired counterparts. This
is especially true in scientific user facilities, where many
environmental factors must be recorded at many locations
simultaneously during data collection. Using wireless tech-
nologies, scientists can often reduce cost while maximizing
the number of sensors without compromising sensor qual-
ity. To this end, we have developed EPICS controllers for
both Bluetooth Low Energy (BLE) sensors and Zigbee sen-
sors. For BLE, we chose the Nordic Thingy:52 for its low
cost, high battery life, and impressive range of sensors. The
controllers we developed combine EPICS base functions,
the Bluetooth generic attribute data structure library, and
multithreading techniques to enable real-time broadcast of
the Thingy’s 20+ sensors’ live values. Because BLE is lim-
ited in range, we also developed a controller for an XBee
sensor which, through the Zigbee mesh protocol, can ex-
pand its range through each node added into the network.
With these controllers, NSLS-II scientists have access to a
whole new class of sensors which are both easier to deploy
and cheaper than their wired predecessors.

INTRODUCTION
At the beamlines of Brookhaven National Laboratory’s

National Synchrotron Light Source II, scientists have
countless environmental parameters that they want to mon-
itor and control. Using wired sensors is a popular solution,
but requires fiddling with wiring, ports, converters, and
typically several protocols. Wireless sensors would remove
all the monotonous tinkering while still providing the ac-
curate sensing that scientists require. Thus, we set out to
create Experimental Physics and Industrial Control System
(EPICS) [1] input-output controllers (IOCs) that scientists
at the Synchrotron may use to interface with wireless sen-
sors that are supremely simple to deploy. Along with the
IOCs, we developed intuitive screens for the Control Sys-
tems Studio [2] client to help users visualize data and in-
teract with the IOC software. Note that our goal is not to
maximize wireless range, but to create a wireless sensing
system that is durable, portable, cost-effective, long-lasting
and simple to deploy. The primary purpose of such a sys-
tem is to initially replace wired sensors in an individual
beamline hutch, and thus does not require extensive long-
range communication.

ZIGBEE: DIGI XBEE L/T/H
The first wireless sensor we considered was the XBee

L/T/H sensor [3], a sensor produced by Digi which utilizes
the Zigbee protocol and senses light, temperature, and
humidity. Figure 1 shows the sensor as well as the periph-

erals we used to interface with the sensor. We were inter-
ested in a Zigbee sensor due to the protocol’s low power,
high battery life, and mesh networking support.

Figure 1: An XBee L/T/H sensor, Digi Wi-Fi Gateway, and

XBee XStick.

Mesh networking is a local network topology in which
every node dynamically and non-hierarchically communi-
cates with other nodes to efficiently route data. The com-
munication is forwarded through nodes to reach far away
nodes. In effect, mesh networking allows for an extensible
network with virtually unlimited range given enough
nodes.

The first step in creating the controller for the sensor was
to bridge the gap between the host device running the IOC
and the sensor. With the Digi XBee sensors, we found our-
selves locked into Digi’s ecosystem; they used a proprie-
tary Zigbee protocol that forced us to use their gateway
hardware to communicate with the sensors. For our devel-
opment we used an XBee Zigbee Wi-Fi Gateway [4],
which we could connect to through Ethernet and configure
our sensors. By default, the Gateway simply publishes sen-
sor readings to a paid cloud service provided by Digi; this
was unsuitable for our needs, as we only wanted to store
and broadcast the readings locally. We found that the Gate-
way runs Python scripts with a proprietary package created
by Digi to allow reading of the sensors, so we developed a
script which runs a TCP server on the Gateway that re-
ceives simple commands and responds with sensor read-
ings. We found that the easiest way to develop an IOC to
interface with this server would be by utilizing
StreamDevice, an IOC structure which uses simple proto-
cols to read and write streams of bytes to a socket through
EPICS. With the server script set to run indefinitely on the
Gateway and using a custom XBee protocol file for our in-
put-output controller, we had successfully created an EP-
ICS system to read, and broadcast the readings from our
sensors.

† kgofron@bnl.gov

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL007

Device Control and Integrating Diverse Systems
WEMPL007

1015

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2: A Control Systems Studio screen displaying readings from three XBee sensors over six hours.

Although the Gateway was an effective solution, it was
not the portable solution we were looking for as it required
its own power and Ethernet; we instead looked to the XBee
XStick [5], a USB dongle that supports Digi’s proprietary
communication. We found that the most effective way to
interface with the dongle was through a proprietary Python
package distributed by Digi [6], and we developed a simi-
lar script which creates a local TCP server to read the re-
mote sensors which would interface with the same control-
ler. Figure 2 depicts a CSS screen we developed along with
the controller to visualize readings from all connected sen-
sors. Although the Gateway and XStick solutions allowed
us to read the sensors, there were several issues: interacting
with an independent Python script was prone to failure, we
were locked in to Digi’s software and could not generalize
the controller [7], and the sensors themselves were pow-
ered by three non-rechargeable AA batteries, not as com-
pact as their alternatives and came at a hefty cost of $100
each. The advantage of a mesh protocol and extensive bat-
tery life was compelling, but we were looking for some-
thing cheaper, more portable, and more generalized.

BLUETOOTH: NORDIC THINGY:52
Bluetooth is by far one of the most popular wireless pro-

tocols and is used by countless sensors. Additionally, since
the release of Bluetooth 4 the protocol has also supported
low energy operation (BLE) which allows for extensive
battery life without any compromise in fidelity. These fac-
tors made the BLE protocol a desirable choice, and we
identified a suitable sensor: The Thingy:52 by Nordic [8].
Figure 3 shows the sensor (with its rubber cover removed)
along with a Nordic development kit and dongle we used
for development.

The Thingy:52 is a compact suite of environmental and
motion sensors, which utilizes generic Bluetooth to broad-
cast data. Additionally, the Thingy:52 has a configurable
RGB LED, button, speaker, and microphone. Compared to
the XBee sensor, the Thingy:52 is smaller, less than half
the price at $40, has far more sensors, and is powered by a
lithium battery rechargeable with micro USB. To interface
with the sensor, we used a $10 Nordic Bluetooth
NRF52840 [9] dongle. The dongle comes pre-installed

with bootloader firmware; however, we flashed Bluetooth
Zephyr firmware onto the stick to make it compatible with
generic Bluetooth libraries. In researching the Bluetooth
protocol, we discovered that data is transferred through ge-
neric attributes (GATT characteristics) which are identified
by universally unique IDs (UUIDs). These characteristics
come in several types; however, the Thingy:52 character-
istics were either read/write or notify. Read/write charac-
teristics are self-explanatory, while notify characteristics
must be ‘subscribed’ to by the client in order to receive data
periodically. We developed our EPICS controller in C, us-
ing the gattlib library [10] developed by Lab A Part to man-
age the Bluetooth connection. Documentation from Nordic
helped us identify the UUID and byte order for each sensor,
and with gattlib we could create a connection and subscribe
to each sensor individually.

Figure 3: From top to bottom: A Thingy:52, NRF52 DK,

and NRF52840 dongle.
The data sent by each characteristic does not contain any

identifiers, such that a single thread handling notification
from every sensor would not be able to distinguish which
sensor sent any given packet of data. Thus, we took a mul-
tithreaded approach in developing the controller, dedicat-
ing a thread to each sensor so that there is no ambiguity in
interpreting the received data. Figure 4 shows a CSS screen

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL007

WEMPL007
1016

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

Figure 4: A Control Systems Studio screen displaying the readings of a single Thingy:52.

we developed to display sensor readings including battery,
button, LED, temperature, pressure, humidity, air quality
(equivalent CO2 and total volatile organic compounds),
roll, pitch, yaw, orientation, acceleration in three dimen-
sions, gyroscope in three dimensions, quaternions, head-
ing, taps, and pedometer. We successfully developed a con-
troller [11] that could read all the sensors of the Thingy:52,
however we were limited by the one-to-one nature of Blue-
tooth; that is, with one dongle we could only connect to one
Thingy:52 at a time. This was a major drawback, as moni-
toring large areas requires the usage of several sensors and
we could not afford to sacrifice a USB slot for each sensor.
We needed a protocol that, like Zigbee, would allow us to
use one dongle to connect to many sensors.

Bluetooth Mesh
Bluetooth Mesh is a protocol which allows many-to-

many connections over Bluetooth, creating networks
which expand their range through each node and in which
nodes can send data to any other node. We knew from
Nordic’s documentation that the Thingy:52 supported
Bluetooth Mesh, however it would require custom firm-
ware. Flashing new firmware onto the Thingy:52 required
the use of a Nordic’s NRF52 DK [12] development kit.
Nordic also supplies two types of firmware for the
Thingy:52 to create a mesh network: node firmware and
bridge firmware [13]. The bridge Thingy:52 acts as an en-
try point for the client to receive readings from the network

and coordinates the nodes to forward their readings. The
node Thingy:52s simply act as regular sensors that forward
their readings to the bridge through the mesh network. The
firmware supplied by Nordic supported only temperature
and humidity readings, so we modified it to also support
pressure and battery level readings [14]. Figure 5 depicts
the CSS screen we developed to simultaneously show the
status of all nodes in the network, which during develop-
ment was four. Since all readings were transmitted by the
bridge through a single Bluetooth characteristic, develop-
ment of the EPICS controller was rather simple, and all
readings could be handled by a single thread. Additionally,
the single-threaded reading design allowed us to create
auxiliary threads that could monitor and fix the connection
to the bridge in real time. The controller we developed [15]
is able to read from up to 10 node Thingy:52s from one
Bluetooth dongle; however, the issue of battery life became
apparent within days of running the controller. Mesh net-
working requires the radios of the Thingy:52s to be running
near constantly, resulting in the batteries draining com-
pletely in mere days. This issue could be avoided by keep-
ing the Thingy:52s plugged into a power source at all
times, but that would defeat the purpose of using wireless
sensors. We needed a protocol that would allow a single
dongle to connect to multiple Thingy:52s and would also
allow the nodes to remain in low-power mode as they
transmitted data. With help from Nordic, we discovered a
solution: multi-link start networking.

Figure 5: A Control Systems Studio screen displaying readings from four Thingy:52s in a mesh network.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL007

Device Control and Integrating Diverse Systems
WEMPL007

1017

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 6: A Control Systems Studio screen displaying readings from four Thingy:52s in a multi-link network over several

days.

Figure 7: A Control Systems Studio screen displaying sensor toggles for Thingy:52 nodes in a multi-link network.

Bluetooth Multi-link
Firmware provided by Nordic [16] allows the NRF52

DK to become a central aggregator for a star network of
sensors such as the Thingy:52. This network structure re-
moves the overhead of mesh communication, and instead
works with the Thingy:52’s default firmware which imple-
ments low-power one-to-one communication. The firm-
ware provided by Nordic allows the DK to connect to up
to nineteen Thingy:52 nodes and a host to receive the sen-
sor readings. In addition, the firmware supported a limited
amount of commands for grouping nodes and toggling
their LEDs from a provided Android app. Since the net-
work utilizes the Thingy:52’s default firmware; reading the
sensors was achieved using standard Bluetooth communi-
cation. We implemented transmission of the Thingy
Weather Station sensors, Thingy Motion sensors, battery
level, and RSSI of the connection between the aggregator
and the node. Figure 6 shows a CSS screen we developed

to plot sensor readings from all nodes over time, in this
case over 4 days for the environmental sensors and 9 days
for the battery sensor for 4 nodes. Additionally, we imple-
mented commands for writing the configuration character-
istics (such as reading interval) for these sensors, reading
connection parameters, and toggling individual sensors
[17]. Figures 7, 8, and 9 show CSS screens we developed
for interacting with these features. This customizability al-
lowed us to easily optimize battery life by lowering scan-
ning periods and disabling sensors which we didn’t need.
With all Weather Station sensors enabled (temperature, hu-
midity, pressure, air quality) at their highest scanning pe-
riod, we observed a loss of roughly 1% of battery every 24
hours on average. This was a vast improvement over the
mesh network battery life; however, it did come with the
loss of long range capabilities. In addition to being power-
efficient, we were able to enable customization to this con-
troller [18], which made it a very compelling solution.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL007

WEMPL007
1018

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

Figure 8: A Control Systems Studio screen displaying en-

vironment sensor config for a Thingy:52 node in a multi-

link network.

Figure 9: A Control Systems Studio screen displaying mo-

tion sensor config for a Thingy:52 node in a multi-link net-

work.

CONCLUSION
Using Bluetooth multi-link, we have created an IOC

which supports up to 19 wireless sensors for roughly 100
days on a fully charged battery. These sensors include tem-
perature, humidity, pressure, and air quality as well as sev-
eral motion sensors which may have applications in motor
control and vibration sensing. These sensors are deployed
by connecting a NRF52 DK to a computer for power, and
then simply placing the Thingy:52s where needed. The EP-
ICS controller is lightweight, requiring only EPICS base
[1] and a Bluetooth C library [10], and can be deployed on
compact hosts such as a Raspberry Pi equipped with a
small Bluetooth USB dongle. This solution eliminates any
need for wires and offers effective customizable monitor-
ing of the environment, although the sensors must be re-
charged after roughly three months of continuous usage.

Bluetooth multi-link may not have the range of Zigbee
or Bluetooth mesh, but we feel that the extended battery
life justifies the trade-off. Our deployments will likely be
limited to individual beamline hutches, which do not re-
quire incredible range and of course would benefit from
maximizing battery life. The range of Bluetooth version 4
is rated at 200 feet (though it is also heavily dependent on
the device and can be blocked by physical objects in the
line-of-sight between the devices) which is sufficient for
our use case; however, development of controllers for more
capable mesh sensors may be the next step in developing
wireless solutions on a facility-wide scale.

ACKNOWLEDGEMENT
This research used resources of the National Synchro-

tron Light Source II, a U.S. Department of Energy (DOE)
Office of Science User Facility operated for the DOE Of-
fice of Science by Brookhaven National Laboratory under
Contract No. DE-SC0012704.

REFERENCES
[1] EPICS Collaboration, https://epics.anl.gov/

[2] Control Systems Studio,

http://controlsystemstudio.org/

[3] Digi XBee Sensors,

https://www.digi.com/products/networking/rf-
adapters-modems/xbee-sensors

[4] Digi XBee Gateway,

https://www.digi.com/products/networking/
gateways/xbee-gateway

[5] XStick USB Adapters,

https://www.digi.com/products/networking/rf-
adapters-modems/xstick

[6] Digi XBee Python Library,

https://github.com/digidotcom/xbee-python

[7] XBeeIOC,

https://github.com/epicsNSLS2-sensors/XBeeIOC
[8] Nordic Thingy:52, https://www.nordicsemi.com/

Software-and-Tools/Prototyping-platforms/
Nordic-Thingy-52

[9] nRF52840 Dongle, https://www.nordicsemi.com/
Software-and-Tools/Development-Kits/nRF52840-
Dongle

[10] gattlib, https://github.com/labapart/gattlib
[11] ThingyIOC,

https://github.com/epicsNSLS2-sensors/ThingyIOC
[12] nRF52 DK, https://www.nordicsemi.com/?

sc_itemid=%7BF2C2DBF4-4D5C-4EAD-9F3D-
CFD0276B300B%7D

[13] Thingy Mesh Demo,
https://github.com/NordicPlayground/Nordic-
Thingy52-mesh-demo

[14] ThingyMesh,
https://github.com/RollandMichael7/ThingyMesh

[15] ThingyMeshIOC,
https://github.com/epicsNSLS2-sensors/
ThingyMeshIOC

[16] Bluetooth 5 Multi-Link Demo,
https://github.com/NordicPlayground/
nrf52-ble-multi-link-multi-role

[17] Expanded Bluetooth 5 Multi-Link Demo,
https://github.com/RollandMichael7/
nrf52-ble-multi-link-multi-role

[18] ThingyAggregatorIOC,
https://github.com/epicsNSLS2-sensors/
ThingyAggregatorIOC

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL007

Device Control and Integrating Diverse Systems
WEMPL007

1019

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

