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Abstract 

For sensor application, wireless technologies are more 
portable and convenient than their wired counterparts. This 
is especially true in scientific user facilities, where many 
environmental factors must be recorded at many locations 
simultaneously during data collection. Using wireless tech-
nologies, scientists can often reduce cost while maximizing 
the number of sensors without compromising sensor qual-
ity. To this end, we have developed EPICS controllers for 
both Bluetooth Low Energy (BLE) sensors and Zigbee sen-
sors. For BLE, we chose the Nordic Thingy:52 for its low 
cost, high battery life, and impressive range of sensors. The 
controllers we developed combine EPICS base functions, 
the Bluetooth generic attribute data structure library, and 
multithreading techniques to enable real-time broadcast of 
the Thingy’s 20+ sensors’ live values. Because BLE is lim-
ited in range, we also developed a controller for an XBee 
sensor which, through the Zigbee mesh protocol, can ex-
pand its range through each node added into the network. 
With these controllers, NSLS-II scientists have access to a 
whole new class of sensors which are both easier to deploy 
and cheaper than their wired predecessors.

INTRODUCTION 
At the beamlines of Brookhaven National Laboratory’s 

National Synchrotron Light Source II, scientists have 
countless environmental parameters that they want to mon-
itor and control. Using wired sensors is a popular solution, 
but requires fiddling with wiring, ports, converters, and 
typically several protocols. Wireless sensors would remove 
all the monotonous tinkering while still providing the ac-
curate sensing that scientists require. Thus, we set out to 
create Experimental Physics and Industrial Control System 
(EPICS) [1] input-output controllers (IOCs) that scientists 
at the Synchrotron may use to interface with wireless sen-
sors that are supremely simple to deploy. Along with the 
IOCs, we developed intuitive screens for the Control Sys-
tems Studio [2] client to help users visualize data and in-
teract with the IOC software.  Note that our goal is not to 
maximize wireless range, but to create a wireless sensing 
system that is durable, portable, cost-effective, long-lasting 
and simple to deploy. The primary purpose of such a sys-
tem is to initially replace wired sensors in an individual 
beamline hutch, and thus does not require extensive long-
range communication.

ZIGBEE: DIGI XBEE L/T/H
The first wireless sensor we considered was the XBee 

L/T/H sensor [3], a sensor produced by Digi which utilizes 
the Zigbee protocol and senses light, temperature, and 
humidity. Figure 1 shows the sensor as well as the periph-

erals we used to interface with the sensor. We were inter-
ested in a Zigbee sensor due to the protocol’s low power, 
high battery life, and mesh networking support.

Figure 1: An XBee L/T/H sensor, Digi Wi-Fi Gateway, and 

XBee XStick. 

Mesh networking is a local network topology in which 
every node dynamically and non-hierarchically communi-
cates with other nodes to efficiently route data. The com-
munication is forwarded through nodes to reach far away 
nodes. In effect, mesh networking allows for an extensible 
network with virtually unlimited range given enough 
nodes. 

The first step in creating the controller for the sensor was 
to bridge the gap between the host device running the IOC 
and the sensor. With the Digi XBee sensors, we found our-
selves locked into Digi’s ecosystem; they used a proprie-
tary Zigbee protocol that forced us to use their gateway 
hardware to communicate with the sensors. For our devel-
opment we used an XBee Zigbee Wi-Fi Gateway [4], 
which we could connect to through Ethernet and configure 
our sensors. By default, the Gateway simply publishes sen-
sor readings to a paid cloud service provided by Digi; this 
was unsuitable for our needs, as we only wanted to store 
and broadcast the readings locally. We found that the Gate-
way runs Python scripts with a proprietary package created 
by Digi to allow reading of the sensors, so we developed a 
script which runs a TCP server on the Gateway that re-
ceives simple commands and responds with sensor read-
ings. We found that the easiest way to develop an IOC to 
interface with this server would be by utilizing 
StreamDevice, an IOC structure which uses simple proto-
cols to read and write streams of bytes to a socket through 
EPICS. With the server script set to run indefinitely on the 
Gateway and using a custom XBee protocol file for our in-
put-output controller, we had successfully created an EP-
ICS system to read, and broadcast the readings from our 
sensors. 

 ___________________________________________  
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Figure 2: A Control  Systems Studio screen displaying readings from three XBee sensors over six hours.

Although the Gateway was an effective solution, it was 
not the portable solution we were looking for as it required 
its own power and Ethernet; we instead looked to the XBee 
XStick [5], a USB dongle that supports Digi’s proprietary 
communication. We found that the most effective way to 
interface with the dongle was through a proprietary Python 
package distributed by Digi [6], and we developed a simi-
lar script which creates a local TCP server to read the re-
mote sensors which would interface with the same control-
ler. Figure 2 depicts a CSS screen we developed along with 
the controller to visualize readings from all connected sen-
sors. Although the Gateway and XStick solutions allowed 
us to read the sensors, there were several issues: interacting 
with an independent Python script was prone to failure, we 
were locked in to Digi’s software and could not generalize 
the controller [7], and the sensors themselves were pow-
ered by three non-rechargeable AA batteries, not as com-
pact as their alternatives and came at a hefty cost of $100 
each. The advantage of a mesh protocol and extensive bat-
tery life was compelling, but we were looking for some-
thing cheaper, more portable, and more generalized.

BLUETOOTH: NORDIC THINGY:52
Bluetooth is by far one of the most popular wireless pro-

tocols and is used by countless sensors. Additionally, since 
the release of Bluetooth 4 the protocol has also supported 
low energy operation (BLE) which allows for extensive 
battery life without any compromise in fidelity. These fac-
tors made the BLE protocol a desirable choice, and we 
identified a suitable sensor: The Thingy:52 by Nordic [8]. 
Figure 3 shows the sensor (with its rubber cover removed) 
along with a Nordic development kit and dongle we used 
for development. 

The Thingy:52 is a compact suite of environmental and 
motion sensors, which utilizes generic Bluetooth to broad-
cast data. Additionally, the Thingy:52 has a configurable 
RGB LED, button, speaker, and microphone. Compared to 
the XBee sensor, the Thingy:52 is smaller, less than half 
the price at $40, has far more sensors, and is powered by a 
lithium battery rechargeable with micro USB. To interface 
with the sensor, we used a $10 Nordic Bluetooth 
NRF52840 [9] dongle. The dongle comes pre-installed 

with bootloader firmware; however, we flashed Bluetooth 
Zephyr firmware onto the stick to make it compatible with 
generic Bluetooth libraries. In researching the Bluetooth 
protocol, we discovered that data is transferred through ge-
neric attributes (GATT characteristics) which are identified 
by universally unique IDs (UUIDs). These characteristics 
come in several types; however, the Thingy:52 character-
istics were either read/write or notify. Read/write charac-
teristics are self-explanatory, while notify characteristics 
must be ‘subscribed’ to by the client in order to receive data 
periodically. We developed our EPICS controller in C, us-
ing the gattlib library [10] developed by Lab A Part to man-
age the Bluetooth connection. Documentation from Nordic 
helped us identify the UUID and byte order for each sensor, 
and with gattlib we could create a connection and subscribe 
to each sensor individually.

Figure 3: From top to bottom: A Thingy:52, NRF52 DK, 

and NRF52840 dongle.
The data sent by each characteristic does not contain any 

identifiers, such that a single thread handling notification 
from every sensor would not be able to distinguish which 
sensor sent any given packet of data. Thus, we took a mul-
tithreaded approach in developing the controller, dedicat-
ing a thread to each sensor so that there is no ambiguity in 
interpreting the received data. Figure 4 shows a CSS screen 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPL007

WEMPL007
1016

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems



Figure 4: A Control Systems Studio screen displaying the readings of a single Thingy:52.

we developed to display sensor readings including battery, 
button, LED, temperature, pressure, humidity, air quality 
(equivalent CO2 and total volatile organic compounds), 
roll, pitch, yaw, orientation, acceleration in three dimen-
sions, gyroscope in three dimensions, quaternions, head-
ing, taps, and pedometer. We successfully developed a con-
troller [11] that could read all the sensors of the Thingy:52, 
however we were limited by the one-to-one nature of Blue-
tooth; that is, with one dongle we could only connect to one 
Thingy:52 at a time. This was a major drawback, as moni-
toring large areas requires the usage of several sensors and 
we could not afford to sacrifice a USB slot for each sensor. 
We needed a protocol that, like Zigbee, would allow us to 
use one dongle to connect to many sensors.

Bluetooth Mesh
Bluetooth Mesh is a protocol which allows many-to-

many connections over Bluetooth, creating networks 
which expand their range through each node and in which 
nodes can send data to any other node. We knew from 
Nordic’s documentation that the Thingy:52 supported 
Bluetooth Mesh, however it would require custom firm-
ware. Flashing new firmware onto the Thingy:52 required 
the use of a Nordic’s NRF52 DK [12] development kit. 
Nordic also supplies two types of firmware for the 
Thingy:52 to create a mesh network: node firmware and 
bridge firmware [13]. The bridge Thingy:52 acts as an en-
try point for the client to receive readings from the network 

and coordinates the nodes to forward their readings. The 
node Thingy:52s simply act as regular sensors that forward 
their readings to the bridge through the mesh network. The 
firmware supplied by Nordic supported only temperature 
and humidity readings, so we modified it to also support 
pressure and battery level readings [14]. Figure 5 depicts 
the CSS screen we developed to simultaneously show the 
status of all nodes in the network, which during develop-
ment was four. Since all readings were transmitted by the 
bridge through a single Bluetooth characteristic, develop-
ment of the EPICS controller was rather simple, and all 
readings could be handled by a single thread. Additionally, 
the single-threaded reading design allowed us to create 
auxiliary threads that could monitor and fix the connection 
to the bridge in real time. The controller we developed [15] 
is able to read from up to 10 node Thingy:52s from one 
Bluetooth dongle; however, the issue of battery life became 
apparent within days of running the controller. Mesh net-
working requires the radios of the Thingy:52s to be running 
near constantly, resulting in the batteries draining com-
pletely in mere days. This issue could be avoided by keep-
ing the Thingy:52s plugged into a power source at all 
times, but that would defeat the purpose of using wireless 
sensors. We needed a protocol that would allow a single 
dongle to connect to multiple Thingy:52s and would also 
allow the nodes to remain in low-power mode as they 
transmitted data. With help from Nordic, we discovered a 
solution: multi-link start networking.

Figure 5: A Control Systems Studio screen displaying readings from four Thingy:52s in a mesh network. 
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Figure 6: A Control Systems Studio screen displaying readings from four Thingy:52s in a multi-link network over several 

days. 

Figure 7: A Control Systems Studio screen displaying sensor toggles for Thingy:52 nodes in a multi-link network.

Bluetooth Multi-link
Firmware provided by Nordic [16] allows the NRF52 

DK to become a central aggregator for a star network of 
sensors such as the Thingy:52. This network structure re-
moves the overhead of mesh communication, and instead 
works with the Thingy:52’s default firmware which imple-
ments low-power one-to-one communication. The firm-
ware provided by Nordic allows the DK to connect to up 
to nineteen Thingy:52 nodes and a host to receive the sen-
sor readings. In addition, the firmware supported a limited 
amount of commands for grouping nodes and toggling 
their LEDs from a provided Android app. Since the net-
work utilizes the Thingy:52’s default firmware; reading the 
sensors was achieved using standard Bluetooth communi-
cation. We implemented transmission of the Thingy 
Weather Station sensors, Thingy Motion sensors, battery 
level, and RSSI of the connection between the aggregator 
and the node. Figure 6 shows a CSS screen we developed 

to plot sensor readings from all nodes over time, in this 
case over 4 days for the environmental sensors and 9 days 
for the battery sensor for 4 nodes. Additionally, we imple-
mented commands for writing the configuration character-
istics (such as reading interval) for these sensors, reading 
connection parameters, and toggling individual sensors 
[17]. Figures 7, 8, and 9 show CSS screens we developed 
for interacting with these features. This customizability al-
lowed us to easily optimize battery life by lowering scan-
ning periods and disabling sensors which we didn’t need. 
With all Weather Station sensors enabled (temperature, hu-
midity, pressure, air quality) at their highest scanning pe-
riod, we observed a loss of roughly 1% of battery every 24 
hours on average. This was a vast improvement over the 
mesh network battery life; however, it did come with the 
loss of long range capabilities. In addition to being power-
efficient, we were able to enable customization to this con-
troller [18], which made it a very compelling solution.
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Figure 8: A Control Systems Studio screen displaying en-

vironment sensor config for a Thingy:52 node in a multi-

link network. 

Figure 9: A Control Systems Studio screen displaying mo-

tion sensor config for a Thingy:52 node in a multi-link net-

work.

CONCLUSION
Using Bluetooth multi-link, we have created an IOC 

which supports up to 19 wireless sensors for roughly 100 
days on a fully charged battery. These sensors include tem-
perature, humidity, pressure, and air quality as well as sev-
eral motion sensors which may have applications in motor 
control and vibration sensing. These sensors are deployed 
by connecting a NRF52 DK to a computer for power, and 
then simply placing the Thingy:52s where needed. The EP-
ICS controller is lightweight, requiring only EPICS base 
[1] and a Bluetooth C library [10], and can be deployed on
compact hosts such as a Raspberry Pi equipped with a
small Bluetooth USB dongle. This solution eliminates any
need for wires and offers effective customizable monitor-
ing of the environment, although the sensors must be re-
charged after roughly three months of continuous usage.

Bluetooth multi-link may not have the range of Zigbee 
or Bluetooth mesh, but we feel that the extended battery 
life justifies the trade-off. Our deployments will likely be 
limited to individual beamline hutches, which do not re-
quire incredible range and of course would benefit from 
maximizing battery life. The range of Bluetooth version 4 
is rated at 200 feet (though it is also heavily dependent on 
the device and can be blocked by physical objects in the 
line-of-sight between the devices) which is sufficient for 
our use case; however, development of controllers for more 
capable mesh sensors may be the next step in developing 
wireless solutions on a facility-wide scale. 
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