Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPHA195 | ESPRESSO Instrument Control Electronics and Software: Final Phases Before the Installation in Chile | ion, controls, software, PLC | 891 |
|
|||
ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations, is undergoing the final testing phases before being shipped to Chile and installed in the Combined Coudé Laboratory (CCL) at the ESO Very Large Telescope site. The integration of the instrument takes place at the Astronomical Observatory of Geneva. It includes the full tests of the Instrument Control Electronics (ICE) and Instrument Control Software (ICS), designed and developed at the INAF-Astronomical Observatory of Trieste. ESPRESSO is the first ESO-VLT permanent instrument which electronics is based on Beckhoff PLCs. Two PLC CPUs shares all the workload of the ESPRESSO functions and through the OPC-UA protocol the PLC communicates with the instrument control software based on VLT control software package. In this phase all the devices and subsystems of ESPRESSO are installed, connected together and verified, mimicking the final working conditions in Chile. This paper will summarize the features of the ESPRESSO control system, the tests performed during the integration in Europe and the main performance obtained before the integration of the whole instrument "on sky" in South America. | |||
![]() |
Poster TUPHA195 [6.514 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA195 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPHA071 | Plans at CERN for Electronics and Communication in the Distributed I/O Tier | ion, radiation, FPGA, electron | 1552 |
|
|||
Controls and data acquisition in accelerators often involve some kind of computing platform (VME, PICMG 1.3, MTCA.4…) connected to Distributed I/O Tier electronics using a fieldbus or another kind of serial link. At CERN, we have started a project to rationalize this tier, providing a modular centrally-supported platform which allows equipment groups to focus on solving their particular problems while benefiting from a set of well-debugged building blocks. The paper describes the strategy, based on 3U Euro crates with a generic FPGA-based board featuring space for FMC mezzanines. Different mezzanines allow communication using different protocols. There are two variants of the electronics, to deploy in environments with and without radiation tolerance requirements. The plans we present are the result of extensive discussion at CERN among all stakeholders. We present them here with the aim of gathering further feedback and potential interest for inter-lab collaborations. | |||
![]() |
Poster THPHA071 [3.171 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA071 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPHA099 | New Concepts for Access Devices in the SPS Personnel Protection System | ion, controls, operation, site | 1608 |
|
|||
The accelerator facilities at CERN span large areas and the personnel protection systems consist of hundreds of interlocked doors delimiting the accelerator zones. Entrance into the interlocked zones from the outside is allowed only via a small number of access points. These are no longer made of doors which have left their place to turnstiles and then to mantraps or Personnel Access Devices (PAD). Originally meant for high security zones, the commercially available PADs have a number of CERN-specific additions. This paper presents in detail the purpose and characteristics of each piece of equipment constituting the access devices and its integration within the personnel protection system. Key concepts related to personnel safety (e.g. interlocked safety tokens, patrols) and to access control (e.g. access authorisation, biometric identity verification, equipment checks) are introduced and solutions discussed. Three generations of access devices are presented, starting from the LHC model put in service in 2008, continuing with the PS devices operational since 2014 and finally introducing the latest model under development for the refurbishment of the SPS Personnel Protection System. | |||
![]() |
Poster THPHA099 [0.830 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA099 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPHA141 | Design of the Front-End Detector Control System of the ATLAS New Small Wheels | ion, detector, interface, electron | 1710 |
|
|||
Funding: For the ATLAS Muon Collaboration The foreseen upgrades of the LHC accelerator and the experiments will drastically increase the data and trigger rates. To cope with the vast and low latency data flow, the ATLAS small wheel muon detector will be replaced with a New Small Wheel. Among the upgrades needed, is a radiation tolerant Slow Control Adapter (GBT-SCA) ASIC dedicated for the on-detector control and monitoring. The ASIC employs various interfaces, making it flexible to match the needs of the different operations. On the backend, the Front-End Link eXchange system will be the interface between the data handling system and the detector front-end and trigger electronics. A dedicated slow control data component was developed as the middleware from FELIX to the end users. It is based on the OPC Unified Architecture protocol and it is comprised of an OPC-UA server, that will handle the slow control traffic from the control room to the GBT-SCA and vice versa. Ultimately, various scope-oriented OPC-UA clients, connected to the OPC-UA server, will be employed to configure and calibrate the ASICs, program the FPGAs, oversee the well-functioning of the boards and monitor the environmental parameters of the detector. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA141 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPHA208 | Communication Architecture of the Detector Control System for the Inner Tracking System | ion, detector, controls, electron | 1930 |
|
|||
This paper presents the proposed communication architecture of the Detector Control System (DCS) for the Inner Tracking System (ITS). The purpose of the DCS is to acquire and control the states of the ITS. Since the ITS is not yet fully implemented, an emulator of the communication architecture is being developed. The proposed architecture comprises five levels. At the bottom, the detector is emulated by sensors connected to microcontrollers. Each microcontroller is then connected to a Raspberry Pi which represents the ALICE low-level front-end (ALF) electronics at the second level of communication architecture. The third level is represented by Front-End Device (FRED), a Linux server where more than one ALF device can be connected. FRED is then connected to the fourth level, implemented by the SCADA interface - WinCC OA. Above all these levels is an archiving and configuration database setup. Configuration bypasses the SCADA interface and is managed directly through FRED. The purpose of the emulator is to verify the proposed architecture in terms of data throughput and cooperation of the mentioned modules. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA208 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||