Keyword: radiation
Paper Title Other Keywords Page
MOCPL06 MARWIN: A Mobile Autonomous Robot for Maintenance and Inspection ion, software, FEL, laser 76
 
  • A. Dehne, T. Hermes, N. Moeller
    hs21, Buxtehude, Germany
  • R. Bacher
    DESY, Hamburg, Germany
 
  MARWIN is a mobile autonomous robot platform designed for performing maintenance and inspection tasks alongside the European XFEL accelerator installation in operation in Hamburg, Germany. It consists of a 4-wheel drive chassis and a manipulator arm. Due to the unique Mecanum drive technology in combination with the manipulator arm the whole robot provides three degrees of freedom. MARWIN can be operated in a pre-configured autonomous as well as a remotely controlled mode. Its operation can be supervised through various cameras. The primary use case of MARWIN is measuring radiation fields. For this purpose MARWIN is equipped with both a mobile Geiger-Mueller tube mounted at the tip of the manipulator arm and a stationary multi-purpose radiation detector attached to the robot's chassis. This paper describes the mechanical and electrical setup of the existing prototype, the architecture and implementation of the controls routines, the strategy implemented to handle radiation-triggered malfunctions, and the energy management. In addition, it reports on recent operations experiences, envisaged improvements and further use cases.  
video icon Talk as video stream: https://youtu.be/SRnZSWMhgQg  
slides icon Slides MOCPL06 [27.173 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-MOCPL06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA032 Parallel Processing for the High Frame Rate Upgrade of the LHC Synchrotron Radiation Telescope ion, controls, real-time, synchrotron 442
 
  • D. Alves, E. Bravin, G. Trad
    CERN, Geneva, Switzerland
 
  The Beam Synchrotron Radiation Telescope (BSRT) is routinely used for estimating the transverse beam size, pro'le and emittance in the LHC; quantities playing a crucial role in the optimisation of the luminosity levels required by the experiments. During the 2017 LHC run, the intensi'ed analog cameras used by this system to image the beam have been replaced by GigE digital cameras coupled to image intensi'ers. Preliminary tests revealed that the typically used sub-image rectangles of 128×128 pixels can be acquired at rates of up to 400 frames per second, more than 10 times faster than the previous acquisition rate. To address the increase in CPU workload for the image processing, new VME CPU cards (Intel 4 core/2.5GHz/8GB RAM) are envisaged to be installed (replacing the previous Intel Core 2 Duo/1.5GHz/1GB RAM). This paper focuses on the software changes proposed in order to take advantage of the multi-core capabilities of the new CPU for parallel computations. It will describe how beam profile calculations can be pipe-lined through a thread pool while ensuring that the CPU keeps up with the increased data rate. To conclude, an analysis of the system performance will be presented.  
poster icon Poster TUPHA032 [1.673 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA129 Motion Control System for the European Spallation Source Target Wheel ion, target, controls, neutron 717
 
  • D.P. Brodrick, T. Gahl, B. Gallese, K. Jurisic, M. Larsson, U. Odén, A. Sandström, K. Sjögreen
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) linear accelerator will deliver high energy proton bunches to tungsten sectors on a rotating Target Wheel, which will produce neutrons through a nuclear process. The motion control system of the Target Wheel presents engineering challenges, such as: velocity and phase stability requirements to precisely align individual tungsten sectors with proton bunches from the accelerator; a high moment of inertia due to the composition and distribution of mass on the wheel; limitations on the physical space to integrate control components, and components for associated safety systems; and, some components being exposed to a high radiation environment. The motion control system being prototyped employs components that satisfy the constraints on the physical space and radiation environment. Precise velocity and phasing of the Target Wheel are achieved by generating a series of pulses as each tungsten sector passes a fiducial point in the rotational cycle, and implementing a motion control algorithm to correctly synchronise the Target Wheel with reference signals from the centralised ESS timing system, which also controls the timing of the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA188 SOLARIS Digital User Office ion, experiment, synchrotron, operation 873
 
  • T. Szymocha, A. Górkiewicz, P. Peterman, M.J. Stankiewicz, J. Szota-Pachowicz
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
  • A. Pulapa, R. Rozanska, T. Szepieniec
    Cyfronet, Kraków, Poland
 
  Polish National Center for Synchrotron Radiation SOLARIS UJ is being prepared for first users. In order to facilitate process of user management, proposal submission, review and beam time allocation the SOLARIS Digital User Office project has been started. The DUO is developed in collaboration with Academic Computer Center CYFRONET AGH. The DUO consists of several main components. The user management component allows user registration and user affiliation management. The proposal submission component facilitate filling proposal form, indicating co-proposers and experimentalist. The review component supports process of decision making, including the Review Meeting event and grading proposals process. Apart of managing the main processes, the application provides an additional functionalities (e.g. experimental reports, trainings, feedbacks). DUO was designed as an open platform to face the challenges related to continually changing Solaris facility. Therefore, the business logic is described as an easily maintainable rule-based specification. To achieve good user experience modern web technologies were used including: Angular for the front-end part and Java Spring for server.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-TUPHA188  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPA02 ESS Accelerator Safety Interlock System ion, controls, operation, ion-source 1213
 
  • D. Paulic, S.L. Birch, M. Mansouri, A. Nordt, Y.K. Sin, A. Toral Diez
    ESS, Lund, Sweden
 
  Providing and assuring safe conditions for personnel is a key parameter required to operate the European Spallation Source (ESS). The main purpose of the Personnel Safety Systems (PSS) at ESS is to protect workers from the facility's ionising prompt radiation hazards, but also identify as well as mitigate against other hazards such as high voltage or oxygen depletion. PSS consist of three systems: the Safety interlock system, the Access control system and the Oxygen deficiency hazard (ODH) detection system. The Safety interlock system ensures the safety functions of the PSS by controlling all hazardous equipment for starting the beam operation and powering the RF-powered units and allowing its operation when personnel is safe. This paper will describe the ESS PSS Accelerator Safety interlock system's scope, strategy, methodology and current status.  
slides icon Slides THCPA02 [4.292 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPA03 Applying Layer of Protection Analysis (LOPA) to Accelerator Safety Systems Design ion, controls, PLC, electron 1217
 
  • F. Tao, J.M. Murphy
    SLAC, Menlo Park, California, USA
 
  Large accelerator safety system design is complex and challenging. The complexity comes from the wide geographical distribution and the entangled control/protection functions that are shared across multiple control systems. To ensure safety performance and avoid unnecessary overdesign, a systematic approach should be followed when setting the functional requirements and the associated safety integrity. Layer of Protection Analysis (LOPA) is a method in IEC61511 for assigning the SIL to a safety function. This method is well suited for complex applications and is widely adopted in the process industry. The outputs of the LOPA study provide not only the basis for setting safety functions design objective, but also a reference document for managing system change and determining test scope. In this paper, SLAC credited safety systems are used to demonstrate the application of this semi-quantitative method. This example will illustrate how to accurately assess the hazardous event, analyze the independence of different protection layers, and determine the reliability of a particular protection function.  
slides icon Slides THCPA03 [2.206 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPA06 A Real-Time Beam Monitoring System for Highly Dynamic Irradiations in Scanned Proton Therapy ion, proton, monitoring, real-time 1224
 
  • G. Klimpki, C. Bula, M. Eichin, A.L. Lomax, D. Meer, S. Psoroulas, U. Rechsteiner, D.C. Weber
    PSI, Villigen PSI, Switzerland
  • D.C. Weber
    University of Zurich, University Hospital, Zurich, Switzerland
 
  Funding: This work is supported by the Giuliana and Giorgio Stefanini Foundation.
Patient treatments in scanned proton therapy exhibit dead times, e.g. when adjusting beamline settings for a different energy or lateral position. On the one hand, such dead times prolong the overall treatment time, but on the other hand they grant possibilities to (retrospectively) validate that the correct amount of protons has been delivered to the correct position. Efforts in faster beam delivery aim to minimize such dead times, which calls for different means of monitoring irradiation parameters. To address this issue, we report on a real-time beam monitoring system that supervises the proton beam position and current during beam-on, hence while the patient is under irradiation. For this purpose, we sample 1-axis Hall probes placed in beam-scanning magnets and plane-parallel ionization chambers every 10 μs. FPGAs compare sampled signals against verification tables - time vs. position/current charts containing upper and lower tolerances for each signal - and issue interlocks whenever samples fall outside. Furthermore, we show that by implementing real-time beam monitoring in our facility, we are able to respect patient safety margins given by international norms and guidelines.
 
slides icon Slides THCPA06 [1.841 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THCPA06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA047 Network System Operation for J-PARC Accelarators ion, network, controls, operation 1470
 
  • N. Kamikubota
    KEK, Ibaraki, Japan
  • N. Kikuzawa
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Nemoto
    ACMOS INC., Tokai-mura, Ibaraki, Japan
  • K.C. Sato, S. Yamada, N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • S.Y. Yoshida
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
 
  The network systems for J-PARC accelerators have been operated over ten years. This report gives: a) an overview of the control network system, b) discussion on relationship between the control network and the office network, and c) recent security issues (policy for antivirus) for terminals and servers. Operation experiences, including troubles, are also presented.  
poster icon Poster THPHA047 [1.056 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA061 LHC Train Control System for Autonomous Inspections and Measurements ion, controls, interface, operation 1507
 
  • M. Di Castro, M.L. Baiguera Tambutti, S.S. Gilardoni, R. Losito, G. Lunghi, A. Masi
    CERN, Geneva, Switzerland
 
  Intelligent robotic systems are becoming essential for inspection and measurements in harsh environments, such as the European Organization for Nuclear Research (CERN) accelerators complex. Aiming at increasing safety and machine availability, robots can help to perform repetitive or dangerous tasks, reducing the risk for the personnel as the exposure to radiation. The Large Hadron Collider (LHC) tunnel at CERN has been equipped with fail-safe trains on monorail able to perform autonomously different missions as radiation survey, civil infrastructures monitoring through photogrammetry, fire detection as well as survey measurements of accelerator devices. In this paper, the entire control architecture and the design of the lowlevel control to fulfil the requirements and the challenges of the LHC tunnel are described. The train low-level control is based on a PLC controller that communicates with the surface via 4G through VPN, where a user-friendly graphical user interface allows the operation of the robot. The low-level controller includes a PLC fail-safe program to ensure the safety of the system. The results of the commissioning in the LHC are presented.  
poster icon Poster THPHA061 [3.686 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA071 Plans at CERN for Electronics and Communication in the Distributed I/O Tier ion, FPGA, electron, electronics 1552
 
  • G. Daniluk, E. Gousiou
    CERN, Geneva, Switzerland
 
  Controls and data acquisition in accelerators often involve some kind of computing platform (VME, PICMG 1.3, MTCA.4…) connected to Distributed I/O Tier electronics using a fieldbus or another kind of serial link. At CERN, we have started a project to rationalize this tier, providing a modular centrally-supported platform which allows equipment groups to focus on solving their particular problems while benefiting from a set of well-debugged building blocks. The paper describes the strategy, based on 3U Euro crates with a generic FPGA-based board featuring space for FMC mezzanines. Different mezzanines allow communication using different protocols. There are two variants of the electronics, to deploy in environments with and without radiation tolerance requirements. The plans we present are the result of extensive discussion at CERN among all stakeholders. We present them here with the aim of gathering further feedback and potential interest for inter-lab collaborations.  
poster icon Poster THPHA071 [3.171 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA101 Review of Personnel Safety Systems at DLS ion, operation, controls, target 1617
 
  • M.C. Wilson
    DLS, Oxfordshire, United Kingdom
 
  Diamond Light Source is celebrating 10 years of "users" at its facility in Oxfordshire, England. Its safety systems have been designed to the standard EN61508, with the facility constructed in 3 phases, which are just concluding. The final "phase 3" beamline Personnel Safety System has been signed-off; hence it is timely to review our experience of the journey with these systems.  
poster icon Poster THPHA101 [0.730 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPHA106 Commissioning of a New Dose Rate Monitoring System at the S-DALINAC ion, detector, linac, controls 1625
 
  • J. Birkhan, M. Arnold, U. Bonnes, J. Conrad, M. Hess, L. Marc, N. Pietralla, L. Stobbe, P. von Neumann-Cosel
    TU Darmstadt, Darmstadt, Germany
 
  Funding: RTG 2128 AccelencE
Recently a new radiation protection interlock system has been established at the Darmstadt superconducting linear electron accelerator S-DALINAC [*]. It prevents the staff from entering radiation protection areas during operation and allows a systematic scanning of these areas for workers before running the accelerator. As an extension of the new interlock, a new dose rate monitoring system has been developed using PIN diodes and self-made ion chambers. These detectors will be used to perfom online dose rate measurements in order to switch automtically the status of illuminated radiation protection panels, which show the current level of protection area. Furthermore, they will be used to characterize systematically the radiation fluxes inside the accelerator facility and to support the beam diagnostics. The readout electronics consists ofμcontrollers with ethernet interfaces using TCP/IP based serial communication. The data acquisition is integrated into the EPICS based control system. First results of the commissioning will be presented.
[*] M. Arnold et al., THE NEW PLC BASED RADIATION SAFETY INTERLOCK SYSTEM AT S-DALINAC, Proceedings of IPAC2014, Dresden, Germany, 2014.
 
poster icon Poster THPHA106 [1.428 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2017-THPHA106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)