Keyword: insertion
Paper Title Other Keywords Page
TUA2WB02 Multi-Bend Lattice Analysis Towards a Diffraction Limited Ring Based Light Source ion, lattice, dipole, emittance 28
 
  • E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  An analysis of lattice configurations up to 10 bend achromat is presented aiming towards diffraction limited ring based light source. The described analysis can apply to any type of a ring based light source however for practical reasons we consider Elettra that has been operating for users for 24 years; to stay competitive for world-class photon science in the future a massive upgrade of the storage ring is needed. The optimum solution is based on certain design criteria, constraints regarding certain accelerator components and their implications on beam dynamics and user requirements. The space available for insertion devices as well as the impact of anti-bends on the design is also addressed. Two proposed realistic lattices are further discussed taking into account different criteria and user requirements. Those lattices reduce the emittance of the present machine by more than one order of magnitude but at the same time respect many other criteria such as realistic magnet gradients, magnets with magnetic length equal to the physical length, drift space enough for radiation extraction, large available space for insertion devices, minimal shift of the beam lines etc.  
slides icon Slides TUA2WB02 [12.781 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FLS2018-TUA2WB02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP2PT032 Feasibility Study of High Energy X-Ray Source at PLS-II ion, wiggler, insertion-device, quadrupole 138
 
  • J.H. Han, J. Lee, S.B. Lee, S.J. Lee, T.-Y. Lee
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  PLS-II operates for user service with the 34 beamlines since 2012. For engineering applications, especially for thick metal samples, a high energy X-ray beamline is under consideration to cover a photon energy up to §I{100}{keV} or beyond. By comparing the radiation spectra from various insertion devices types, superconducting wiggler was found to be a most promising candidate. A feasibility study to install the high field wiggler in the PLS-II ring is presented in this paper. Electron beam dynamics studies for a minimum impact on the electron beam parameters and engineering consideration to add more magnets are carried out.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FLS2018-WEP2PT032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)