Reiche, S.
(Sven Reiche)

WEBOS01 Current-Enhanced SASE Using an Optical Laser and its Application to the LCLS
Alexander A Zholents, William M. Fawley (LBNL/CBP, Berkeley, California), Paul J Emma, Zhirong Huang, Gennady Stupakov (SLAC, Menlo Park, California), Sven Reiche (UCLA/DPA, Los Angeles - California)

We propose a significant enhancement of the electron peak current entering a SASE undulator by inducing an energy modulation in an upstream wiggler magnet via resonant interaction with an optical laser, followed by micro-bunching of the energy-modulated electrons at the accelerator exit. This current enhancement allows a considerable reduction of the FEL gain length. The x-ray output consists of a series of uniformly spaced spikes, each spike being temporally coherent. The duration of this series is controlled by the laser pulse and in principle can be narrowed down to just a single, ~100-attosecond spike. Given potentially absolute temporal synchronization of the x-ray spikes to the energy-modulating laser pulse, this scheme naturally makes pump-probe experiments available to SASE FEL’s. We also study various detrimental effects related to the high electron peak current and discuss potential cures. We suggest a possible operational scenario for the LCLS optimized with respect to the choice of the modulating laser beam and electron beam parameters. Numerical simulations are provided.

MOPOS27 Status Report on SPARC Project
Alberto Renieri, Mariano Carpanese, Franco Ciocci, Giuseppe Dattoli, Antonio Di Pace, Andrea Doria, Francesco Flora, Gian Piero Gallerano, Luca Giannessi, Emilio Giovenale, Giovanni Messina, Luca Mezi, Pier Luigi Ottaviani, Simonetta Pagnutti, Giovanni Parisi, Luigi Picardi, Marcello Quattromini, Giuseppe Ronci, Concetta Ronsivalle, Elio Sabia, Mauro Sassi, Alberto Zucchini (ENEA C.R. Frascati, Frascati - Roma), Carlo Joseph Bocchetta, Miltcho B. Danailov, Gerardo D'Auria, Mario Ferianis (Elettra, Basovizza, Trieste), F. Alessandria, A. Bacci, Ilario Boscolo, F. Broggi, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, M. Romè, Luca Serafini (INFN Milano, Milano), D. Levi, Mario Mattioli, G. Medici, Pietro Musumeci (INFN Roma, Roma), L. Catani, E. Chiadroni, Sergio Tazzari (INFN-Roma2, Roma), David Alesini, M. Bellaveglia, Sergio Bertolucci, M.E. Biagini, Caterina Biscari, R. Boni, Manuela Boscolo, Michele Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, Massimo Ferrario, D. Filippetto, V. Fusco, A. Gallo, A. Ghigo, Susanna Guiducci, M. Incurvati, C. Ligi, F. Marcellini, Mauro Migliorati, C. Milardi, Luigi Palumbo, L. Pellegrino, Miro Preger, P. Raimondi, R. Ricci, C. Sanelli, Mario Serio, F. Sgamma, Bruno Spataro, A. Stecchi, A. Stella, Franco Tazzioli, Cristina Vaccarezza, Mario Vescovi, C. Vicario, M. Zobov (INFN/LNF, Frascati (Roma)), A. Cianchi, A. D'Angelo, R. Di Salvo, A. Fantini, D. Moricciani, Carlo Schaerf (Rome University Tor Vergata, Roma), D. H. Dowell, Paul J Emma, C. Limborg-Deprey, D. T. Palmer (SLAC, Menlo Park, California), James B Rosenzweig, Gil Travish (UCLA, Los Angeles, California), Sven Reiche (UCLA/DPA, Los Angeles - California)

We review the status of FEL source activity of the on going SPARC FEL experiment, developed within the framework of a collaboration among ENEA, CNR, INFN, INFM, Sincrotrone Trieste and University of Rome Tor Vergata. The project is aimed at realising a SASE FEL source, operating in the visible (around 500 nm), with an extended range of tunability down to the VUV (100nm) by the use of the mechanism of non-linear harmonic generation. The development of the relevant activities foresees the realisation of an advanced 150 MeV photo-injector source, aimed at producing a high brightness electron beams, needed to drive a SASE-FEL experiment and a 12 m long undulator. We present the status of the design and construction of the injector, of the undulator and of the e-beam transport line. In particular we discuss the choice of the project parameters, their optimisation and the sensitivity of the SPARC performance to any parameter variation. We will show, using start to-end simulations, what is the impact of the e-beam and of the undulator parameters on the characteristics of the output laser field and in particular on the amount of the non linearly generated power at higher harmonics.

MOPOS59 Coherent Radiation Effects in the LCLS Undulator
Sven Reiche (UCLA/DPA, Los Angeles - California), Zhirong Huang (SLAC, Menlo Park, California)

For X-ray Free-Electron Lasers, a change in the electron energy while amplifying the FEL radiation can shift the resonance condition out of the bandwidth of the FEL. The largest sources of energy loss is incoherent undulator radiation. Because the loss per electron depends only on the undulator parameters and the beam energy, which are fixed for a given resonant wavelength, the average energy loss can be compensated for by a fixed taper of the undulator. Coherent radiation has a strong enhancement proportional to the number of electrons in the bunch for wavelengths comparable to or longer than the bunch dimension or bunch sub-structures. If the coherent loss is comparable to that of the incoherent the required taper depends on the bunch charge and the applied compression scheme and a change of these parameters would require a change of the taper. This imposes a limitation on the operation of FELs, where the taper can only be adjusted manually. In this presentation we analyze the coherent emission of undulator radiation and transition undulator radiation for LCLS, and estimate the effect of the energy spread by the coherent synchrotron radiation within the undulator.

MOPOS60 Spontaneous Radiation Background Calculation for LCLS
Sven Reiche (UCLA/DPA, Los Angeles - California)

The intensity of undulator radiation, not amplified by the FEL interaction, can be larger than the maximum FEL signal in the case of an X-ray FEL. In the commissioning of a SASE FEL it is essential to extract an amplified signal early to diagnose eventual misalignment of undulator modules or errors in the undulator field strength. We developed a numerical code to calculate the radiation pattern at any position behind a multi-segmented undulator with arbitrary spacing and field profiles. The output can be run through numerical spatial and frequency filters to model the radiation beam transport and diagnostic. In this presentation we estimate the expected background signal for the FEL diagnostic and at what point along the undulator the FEL signal can be separated from the background. We also discusses how much information on the undulator field and alignment can be obtained from the incoherent radiation signal itself.

MOPOS63 Generation of GW-level, sub-Angstrom Radiation in the LCLS using a Second-Harmonic Radiator
Zhirong Huang (SLAC, Menlo Park, California), Sven Reiche (UCLA/DPA, Los Angeles - California)

Electron beams are strongly microbunched near the high-gain FEL saturation with a rich harmonic content in the beam current. While the coherent harmonic emission is possible in a planar undulator, the third harmonic radiation typically dominates with about 1% of the fundamental power at saturation. In this paper, we discuss the second harmonic emission in the main undulator induced by effects of finite beam size and angular spread. We show that by a suitable design of an second-stage undulator with its fundamental wavelength tuned to the second harmonic of the main undulator, coherent second harmonic radiation much more intense than the third harmonic is emitted. Numerical simulations and applications to the LCLS project aiming at generating GW-level and sub-Angstrom x-ray pulses are presented.

THPOS56 VISA IB: Ultra-High Bandwidth, High Gain SASE FEL
Gerard Andonian, Ronald Barkley Agustsson, Alex Murokh, Claudio Pellegrini, Sven Reiche, James B Rosenzweig, Gil Travish (UCLA, Los Angeles, California), Marcus Babzien, Ilan Ben-Zvi, Jung Yun Huang, Vladimir N. Litvinenko, Vitaly Yakimenko (BNL, Upton, Long Island, New York), Ilario Boscolo, S. Cialdi, Alessandro Flacco (INFN Milano, Milano), Massimo Ferrario, Luigi Palumbo, C. Vicario (INFN/LNF, Frascati (Roma))

The results of a high energy-spread SASE FEL experiment, the intermediary experiment linking the VISA I and VISA II projects, are presented. A highly chirped beam (~1.7%) was transported without correction of longitudinal aberrations in the ATF dogleg, and injected into the VISA undulator. The output FEL radiation displayed an uncharacteristicly large bandwidth (~11%) with extremely stable lasing and measured energy of about 2 microJoules. Start-to-end simulations reproduce key features of the measured results and provide an insight into the mechanisms giving rise to such a high bandwidth. These analyses are described as they relate to important considerations for the VISA II experiment.

TUPOS11 The SPARX Project : R&D Activity towards X-rays FEL Sources
David Alesini, M. Bellaveglia, Sergio Bertolucci, M.E. Biagini, R. Boni, Manuela Boscolo, Michele Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, Massimo Ferrario, D. Filippetto, V. Fusco, A. Gallo, A. Ghigo, Susanna Guiducci, M. Incurvati, C. Ligi, F. Marcellini, Mauro Migliorati, Andrea Mostacci, Luigi Palumbo, L. Pellegrino, Miro Preger, P. Raimondi, R. Ricci, C. Sanelli, Mario Serio, F. Sgamma, Bruno Spataro, A. Stecchi, A. Stella, Franco Tazzioli, Cristina Vaccarezza, Mario Vescovi, C. Vicario (INFN/LNF, Frascati (Roma)), Franco Ciocci, Giuseppe Dattoli, Antonio Di Pace, Andrea Doria, Francesco Flora, Gian Piero Gallerano, Luca Giannessi, Emilio Giovenale, Giovanni Messina, Luca Mezi, Pier Luigi Ottaviani, Simonetta Pagnutti, Giovanni Parisi, Luigi Picardi, Marcello Quattromini, Alberto Renieri, Concetta Ronsivalle, A. Torre, Alberto Zucchini (ENEA C.R. Frascati, Frascati - Roma), F. Alessandria, A. Bacci, Ilario Boscolo, F. Broggi, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, M. Mauri, V. Petrillo, M. Romè, Luca Serafini (INFN Milano, Milano), Mario Mattioli, Pietro Musumeci (INFN Roma, Roma), L. Catani, E. Chiadroni, A. Cianchi, Carlo Schaerf (INFN-Roma2, Roma), S. De Silvestri, M. Nisoli, S. Stagira (Politecnico di Milano, Milano), Paul J Emma (SLAC, Menlo Park, California), James B Rosenzweig (UCLA, Los Angeles, California), Sven Reiche (UCLA/DPA, Los Angeles - California)

SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Università di Roma Tor Vergata aiming at the construction of a FEL-SASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on the R&D activity on critical components and techniques for future X-ray facilities. The R&D plans for the FEL source will be developped along two lines: (a) use of the SPARC high brightness photo-injector to develop experimental test on RF compression techniques and other beam physics issues, like emittance degradation in magnetic compressors due to CSR; (b) development of new undulator design concepts and up-grading of the FEL SPARC source to enhance the non linear harmonic generation mechanism, design and test of e-beam conditioning, prebunching and seeding. A parallel program will be aimed at the development of high repetition rate S-band gun, high Quantum Efficiency cathodes, high gradient X-band RF accelerating structures and harmonic generation in gas. In a second phase we plan to explore production of X-rays in a SASE-FEL with harmonic generation, upgrading existing facilities.