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Benefits: Exponential gain length reduction for XUV
& X-ray FEL’s, absolute temporal synchronization,
control of radiation pulse envelope

Technique: Exploit σγ/γ < ρ to increase peak I, ρ, σγ;
produce strong current enhancement into sub-fs,
periodic spikes (<IB> unchanged)

How: Use optical laser + short wiggler at moderate γ
to modulate γ(t), followed by dispersive element at
large γ to produce I(t)

Concerns: Degradation from unwanted collective
effects in accelerator and undulator



ESASE: “nuts and bolts”

E ~ 4.5 GeV

• Laser peak power ~ 10 GW (“easy”)
• Short wiggler, ~ 10 periods

BunchingAccelerationModulation30-100 fs pulse
�L~0.8 to 2.2�m

Electron beam after
dispersive bunching
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A schematic of the LCLS with ESASE
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Effective width should be > slippage ~ λr Nu ~ 1.2 λr /ρ  at z=LsatBz L 2/0 λ≅∆

Longitudinal properties of a single spike

Electron beam phase
space after chromatic
dispersion section
(ELEGANT results)

B=∆γ/σγ0 =5

λL= 2.2µm
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Potential improvements from ESASE technique
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Access to shorter wavelengths

Analytic results using
M. Xie fitting formula

No slippage or other
temporal variation
effects

(This is probably as
good as it can get!)



““StartStart--toto--EndEnd”” simulations: Beam propertiessimulations: Beam properties
atat linaclinac exit (14.4exit (14.4 GeVGeV)) ------ ELEGANTELEGANT
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• Macropart icles imported
from Parmela simulat ion

• Linac simulat ion:
– λL=2.2µm, B=5 for

laser modulator
–includes energy spread
induced by laser heater

–includes wakes & CSR
effects

–does not include space
charge effects

• Results show some current
modulat ion, increase in σE

–emit tance appears
unchanged
(0.8 mm-mrad)



PostPost--dispersion, at undulator entrancedispersion, at undulator entrance

λL=2.2µm, B=5 ; 1D CSR

NO CSR

NO CSR CSR

NO CSR CSR NO CSRCSR

CSR

CSR effects look non-trivial but manageable (suppression likely due to large R51)



FEL simulation results for <	> = 26 m
(achievable using present hardware)

“ Start -to-End” simulat ions
• PARMELA -> ELEGANT ->

GINGER (lines) / GENESIS (boxes)
–Full 6D phase space
reconst ruct ion/ sampling

• PL~10 GW, ∆γ -> ±14, B=5
• Standard case (0.8 mm-mrad)

t racked through same
accelerator configurat ion sans
laser modulat ion

• ESASE cases saturate ~10 m
earlier but at 2X <P> reduct ion
– <10X power cont rast at all z

• <β> not opt imal for ESASE

LCLS 	=26 m lattice



FEL simulation results for <	> = 12m
(requires LCLS hardware modification)

“ Start -to-End” simulat ions
• 3-m FODO lat t ice period

–drif ts+quads occupy 2 * 0.24 m
–not compat ible with current
LCLSlat t ice design

• Standard case performs well at
this β due to low emit tance
(0.8 mm-mrad)

• ESASE cases saturate by 50 m
–~8-20X power cont rast
–suff icient to dominate SASE
radiat ion from unmodulated
port ion of e-beam pulse



X-ray radiation from individual ESASE spikes

• Each radiation spike is nearly temporally coherent and transform-limited

• Carrier phase for x-ray wave is random from spike to spike

• Pulse durations < 200 attoseconds may be possible with 800-nm laser

<β>=26 m, λL=800 nm; GENESIS <β>=12 m, λL=2.2 µm; GINGER



Coherent off-axis radiation in the undulator

� Radiation field for λ ∼ 2πσz in the undulator is resonant at
angle ψ with beam velocity

� 1D “wake” (E. Saldin et al., NIM A 417, 158 [1998])
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For Ipeak = 23 kA, and σz = 30 nm, we find
induced σγ /γ = 0.15% at Lu ~ 30 m (1D!!!)
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Suppression of off-axis CUR due to
non-zero transverse beam size

Coherent radiation:

Bunch form factor :

angle ψ<<1
ψ 2 = 4π / kλu
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A consideration for choice of focusing strength!

Energy loss distribution along the current spike
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Resistive wall wake field
Transient wake field effect

2a

e-beam

λ L
= 800 - 2200 nm

2a~5mm

Single bunch catch-up distance ~ a2/2�spike

~30 m

2a 	z
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Steady state wake For λL=800 nm and B=5, peak transverse fields at
wall are only ~1.3X greater than unmodulated case

Expected induced δE/E0 < 2 x 10-4 at z=50 m

800 nm
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Longitudinal Space Charge Effects

• With kn=nkL , knσx /γ << 1 (pencil beam limit), and kna /γ >> 1 (free
space limit), space charge impedance is

• For <I>=3.4kA, B=5, λL=2.2µm, σx=33µm, d(∆γ)/ds ~ 0.05 m-1

- Increases to 0.2 m-1 for B=8, λL=0.8µm

• Possibly problematic for 200-m drift between
DL2 and undulator entrance

– Current bunching can be delayed to just before undulator

• Energy spread induced by space charge in undulator < spike σγ
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Summary of Possible ESASE Benefits

1) Shorter gain length, earlier saturation, very high peak power,
and good contrast (for <β> ≤ 12 m) in pulse output energy

3) Each spike is nearly temporally coherent, with a
bandwidth ~ transform-limited;
but random carrier phase from spike to spike

2) Control of x-ray pulse duration via laser pulse shaping
=> possibility for solitary ~100 attosecond x-ray pulse

5) Possibility for
=> relaxed emittance requirement
=> shorter x-ray wavelengths

4) Absolute synchronization between modulating laser pulse
and output x-ray pulse => pump-probe expts.

Further optimization of ESASE for LCLS is likely (low Q?)
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