A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V  

alignment

Paper Title Other Keywords Page
TUPB12 BPMs for the XFEL Cryo module linac, quadrupole, cryogenics, pick-up 84
 
  • D. Nölle, N. Baboi, K. Knaack, D. Lipka, J. Lund-Nielsen, N. Mildner, R. Neumann, F. Schmidt-Föhre, M. Siemens, T. Traber, S. Vilcins
    DESY, Hamburg
  The European XFEL is based on superconducting accelerator technology developed in the context of the TESLA collaboration. The accelerator itself consist of cryo modules each equipped with 8 cavities, followed by a quadrupole/steerer package, a BPM and a HOM absorber. This contribution will present the layout of the BPM system for the cryo modules, describing the monitor itself, its integration into the cryo module. Additionally, the electronics concept will be discussed. Finally the results of beam measurements at FLASH using prototypes of the monitor and the electronics will be presented.  
 
WEPB09 Mechanical Design of the Intensity Measurement Devices for the LHC vacuum, impedance, shielding, resonance 253
 
  • D. B. Belohrad, S. Longo, OP. Odier, S. Thoulet
    CERN, Geneva
  The intensity measurement for the LHC ring is provided by eight current transformers: 2 DC current transformers (DCCTs) and 2 fast transformers (FBCTs) per vacuum chamber. The measurement precision of 1uArms at averaging over 1s time interval for the DCCTs and ±109 charges in 25ns bunch measurements for the FBCTs is required. Such constraints call for low noise electronics and a compact magnetically shielded mechanical design. Due to ultra high vacuum requirements in the LHC the vacuum chambers are equipped with the non-evaporable getter (NEG) film. The NEG is activated by heating the vacuum chamber to 200°C and more. Such temperatures affect the structure of the magnetic materials, which form the base part of the intensity measurement devices, and degrade their performance. A cooling circuit is needed. Due to the mechanical constraints, the cooling circuit, as well as heating element must form an integral part of the design. The paper presents the solution of these problems and discusses the mechanical construction of the DCCTs and FBCTs currently being installed in the LHC.  
 
WEO3A01 Low-Latency High-Resolution Single-Shot Beam Position Monitors pick-up, feedback, dipole, linac 376
 
  • D. M. Treyer
    PSI, Villigen
  In this paper design aspects of high-resolution, single-shot transverse beam position monitors (BPMs) are discussed. The focus is put on BPMs which can provide (sub-)micrometer precision at measurement speeds of less than a few hundred nanoseconds. Different pickups, analog signal conditioning electronics, and digital post processing schemes are reviewed. Their characteristics and limitations with respect to application in high-resolution, fast BPMs are pointed out. Exemplary implementations of successful BPM realizations found in the literature are reviewed. A specific implementation of a BPM based on a resonant stripline pickup, developed for a fast transverse feedback system for the European X-FEL, is also presented.