A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   R   S   T   U   W    

longitudinal-dynamics

Paper Title Other Keywords Page
PM05 Optical Transmission Line For Streak Camera Measurements at Pitz diagnostics, electron, gun, optics, PITZ 98
 
  • J. Bähr, D. Lipka, H. Lüdecke
    DESY-Zeuthen, Deutsches Elektronen-Synchrotron, Zeuthen, Germany
  The photoinjector injector test facility at DESY Zeuthen (PITZ) [1] produces electrons with a momentum of about 4 MeV/c. It is the aim to measure the temporal characteristics of the electron bunch train and single bunches with high accuracy of the order of 1 ps and less. Several types of streak cameras will be used in combination with different radiators which transform particle energy in light. The problem to be solved is the light transport over a distance of about 27 m. Basic demands to the optical system and design principles will be explained. The optical and technical solutions will be presented. The strategy of adjustment and commissioning of the optical system will be described. The system contains switchable optics to use different radiators (OTR, Cherenkov radiators). Diagnostic tools are foreseen at different positions along the optical axis. The results of different measurements in the lab and using the original system will be presented. The problems on the minimalization of the time dipersion in the system will be discussed.

[1] F.Stephan, et al., Photo injector test facility under construction at DESY Zeuthen, FEL 2000, Durham

 
 
PM28 Application of Beam Diagnostics for Intense Heavy Ion Beams at the GSI UNILAC heavy ion, linac, space charge 161
 
  • W. Barth, L. Dahl, J. Glatz, L. Groening, S. Richter, S. Yaramishev
    GSI, Gesellschaft für Schwerionenforschung, Darmstadt, Germany
  With the new High Current Injector (HSI) of the GSI UNILAC the beam pulse intensity had been increased by approximately two orders of magnitudes. The HSI was mounted and commissioned in 1999; since this time the UNILAC serves as an injector for the synchrotron SIS, especially for high uranium intensities. Considering the high beam power of up to 1250 kW and the short stopping range for the UNILAC beam energies (≤12 MeV/u), accelerator components could be destroyed, even during a single beam pulse. All diagnostic elements had to be replaced preferably by non-destructive devices. The beam current is mainly measured by beam transformers instead of Faraday cups, beam positions are measured with segmented capacitive pick-ups and secondary beam monitors instead of profile harps. The 24 installed pick-ups are also used to measure intensities, widths and phase of the bunches, as well beam energies by evaluating pick-ups at different positions. The residual gas ionization monitors allow on-line measurements of beam profiles. The knowledge of the real phase space distribution at certain position along the linac is necessary for optimizing the machine tuning, for the improvement of the matching to the synchrotron and for a better understanding of beam dynamic issues under space charge conditions. The paper will report the application of different beam diagnostic devices for the measurement of transverse beam emittances at different UNILAC beam energies and for different beam intensities. Additionally, measurements of the bunch structure after the HSI and a the design of a new device for the measurement of the longitudinal emittance at the end of the UNILAC will be included.  
 
PT12 Beam Phase Measurements in the AGOR Cyclotron diagnostics, instrumentation, cyclotron, ion 193
 
  • S. Brandenburg, H.W. Nijboer, W.K. van Asselt
    KVI, Kernfysisch Versneller Instituut, Groningen, The Netherlands
  Beamphase measurement to optimize the isochronism is an essential part of the diagnostics in multi-particle, multi-energy cyclotrons. In the AGOR cyclotron an array of 13 nondestructive beamphase pick-ups is installed. To reduce the large disturbances from the RF-system the measurements are traditionally performed at the 2nd harmonic of the RF-frequency. To further improve the sensitivity intensity modulation of the beam has been introduced. This creates side-bands in the Fourier spectrum, that are completely free of interference from the RF-system. These side-bands contain information on both the beamphase with respect to the accelerating voltage and the number of revolutions up to the radius of the measurement. A specific case is intensity modulation at the orbital frequency, where the side-bands contain only information on the beamphase. Measurements with the different methods will be presented, demonstrating that the intensity modulation strongly improves the sensitivity of the measurement. Useful beamphase measurements can now be made for beam intensities down to 10 nA.  
 
PT22 Measurement of the longitudinal phase space at the Photo Injector Test Facility at DESY Zeuthen diagnostics, electron 222
 
  • J. Bähr, I. Bohnet, J.H. Han, M. Krasilnikov, D. Lipka, V. Miltchev, A. Oppelt, F. Stephan
    DESY-Zeuthen, Deutsches Elektronen-Synchrotron, Zeuthen, Germany
  • K. Flöttmann
    DESY, Deutsches Elektronen-Synchrotron, Hamburg, Germany
  The photo injector test facility at DESY Zeuthen (PITZ) has been developed with the aim to deliver low emittance electron beams and study its characteristics for future applications at free electron lasers and linear accelerators. The energy of the electron beam varies in the range between 4 and 5 MeV. One of the important properties of the delivered beam is the longitudinal phase space of the electron beam. Measurements of the momentum distributions show a small energy spread. The principle of the measurement of the bunch length will be discussed, time resolutions will be shown and preliminary results will be given. The design to measure the correlation between momentum and time distribution of the electron bunch will be shown with calculated resolutions.