APPLICATIONOFBEAMDIAGNOSTICSFORINTENSEHEAVYIONBEAMSATTHE GSIUNILAC

W.Barth, L.Dahl, J.Glatz, L.Groening, S.Richter, S.Yaramishev GesellschaftfürSchwerionenforschung, D-64291Darmstadt, Germany

Abstract

With the new High Current Injector (HSI) of the GSI UNILACthebeampulseintensityhadbeenincreasedby approximately two orders of magnitudes. The HSI was mounted and commissioned in 1999; since this time the UNILAC serves as an injector for high uranium intensities for the synchrotron SIS. Considering the high beam power of up to 1250 kW and the short stopping range for the UNILAC beam energies (< 12 MeV/u). acceleratorcomponentscouldbedestroyed, evenduring a single beam pulse. All diagnostic elements had to be replaced preferably by non-destructive devices. Beam transformers instead of Faraday cups mainly measure the beam current, beam positions are measured with segmented capacitive pick-ups and residual gas monitors insteadofprofileharps.The24installedphaseprobesare alsoused to measure widths and phase of the bunches, as well as beam energies by evaluating pick-ups at different positions. The residual gas ionisation monitors allow for on-line measurements of beam profiles. The knowledge of the real phase space distribution at certain position along the linac is necessary for optimising the machine tuning, for the improvement of the matching to the synchrotron, and for a better understanding of beam dynamic issues under space charge conditions. The paper reports the application of different beam diagnostic devices for the measurement of transverse beam emittances at different UNILAC beam energies and at different beamintensities. Additionally, measurements of the bunch structure after the HSI and the design of a new device for the measurement of the longitudinal emittance attheendoftheUNILACareincluded.

INTRODUCTION

Fig.1:SchematicoverviewoftheGSIUNILAC.

The GSI-UNILAC is specified to deliver up to $4 \cdot 10^{10} \text{ U}^{73+}$ particles to the heavy ion synchrotron (SIS) during 100 μ s, whereby the HSI accelerates 15 emA $^{238}\text{U}^{4+}$. The required beam parameters (for the uranium case) are summarized in Table 1. In 1999 the UNILAC (see Figure 1) underwent a renewal of its prestripper section to increase the ion beam current to I = 0.25 A/q (emA) for mass over charge ratios of up to 65. The high

Table1:SpecifiedbeamparametersalongtheUNILAC.					
	HSI entrance	HSI exit	Alvarez entrance	SIS injection	
Ionspecies	$^{238}U^{4+}$	$^{238}\text{U}^{4+}$	$^{238}U^{28+}$	238U ⁷³⁺	
El.Current[mA]	16.5	15	12.5	4.6	
Part.per100 µspulse	$2.6 \cdot 10^{12}$	$2.3 \cdot 10^{12}$	$2.8 \cdot 10^{11}$	$4.2 \cdot 10^{10}$	
Energy[MeV/u]	0.0022	1.4	1.4	11.4	
$\Delta W/W$	-	$4 \cdot 10^{-3}$	±1.10-2	±2·10 ⁻³	
$\varepsilon_{n,x}$ [mmmrad]	0.3	0.5	0.75	0.8	
$\varepsilon_{n,y}$ [mmmrad]	0.3	0.5	0.75	2.5	

currentinjectorHSIconsists of ion sources of MEVVA-, MUCIS-orPenning-type, amassspectrometer, and alow energybeamtransportsystem(LEBT).The36MHzRFQ accelerates the ion beam from 2.2 keV/u to 120 keV/u. The matching to the following IH-DTL is done with a short 11 cell adapter RFQ (Super Lens). The IH-DTL consists of two separatetanks accelerating the beam to thefull HSI-energy of 1.4 MeV/u [1]. Before injection into the Alvarez accelerator the HSI-beam is stripped (gas stripper) - charge analysis is indispensable. A five stage accelerator provides seven discrete beam energies in the range of 3.6 to 11.4 MeV/u, the following 10 single gap resonators allow any energy up to 13 MeV/u. In the transfer line to the synchrotron at 11.4 MeV/u a foil stripper and another charge state separator system is in use.

OPERATINGBEAMDIAGNOSTICS

Table2:Numberofbeamdiagnosisdevicesinthe UNILAC.

Element	Number	Resolution
FaradayCups	73	100 nA(highpowercapable)
CurrentTransformers	45	100 nA(100 kHz)
ProfileGrids	103	≥1 mm
CapacitivePickups (todeterminepositions)	34 25	$\Delta W/W = 0.1$ %
EmittanceMeas.Device	8	variable
BunchShapeMonitors	2	25 ps(0.3 °)

The wide spread of beam intensities – from pA up to mA demands for a very versatile set of different beam diagnostics elements. To measure the different beam properties such as position, profile, intensity, energy, transverse emittance and, bunch shape various beam diagnosticselements(listedinTable2)areemployed.

The Faraday cups serve primarily as beam stoppers, and secondarily as diagnostics devices. Current transformers and profile grids are used for beam set-up and tuning. The capacitive pick-ups measure the beam energy by a time-of-flight technique; the sampled signal of up to two pick-ups can be displayed on a video screen.

eitherusedduringmachinedevelopment.

Fig. 2: Online monitoring of beam position with the rfbunch pick- ups at the HSI and transfer channel; the measuredpositions and astored reference are represented.

BEAMDIAGNOSTICSFORHIGH CURRENTOPERATION

If the HSI delivers highly intense uranium beams, the powerstored in one pulse (100 µs) can easily destroy any conventional beam destructive diagnostics element. So either the beam intensity has to be reduced to perform the measurements, or dedicated non-destructive measurements have to be used [2]. At the UNILAC both paths are followed: non-destructive devices such as the current transformers as well as residual gas monitors are installed. An online surveil lance system automatically reduces the frequency and the length of the beam pulses. This keeps the deposited power well below any destruction threshold.

The outmost number of rf-bunch pick-ups are 4segmented probes, which allow to derive the beam positionbydigitizingthepowerofthe6 thharmonicofthe rf-frequency. Next to this function the current transformers are also the basis of the online transmission surveillance system. This surveillance system is directly linked to the control system and can monitor each of possible different ion beams independently. If a significant beam loss is detected, an interlock signal is generated that cuts off the beam pulse within less than 10 μ s.

EMITTANCEMEASUREMENTS

Measurements of transverse emittances for the several energy steps of the HSI (and at 11.4 MeV/u) were done exclusively with a slit-grid device for short pulses. The emittances were measured in the LEBT-section, for 120 keV/u, 750 keV/u and 1.4 MeV/u the beam was transported to a measurement device in the gas stripper region; another device is placed after the Alvarez. Fig. 3 summarises the measured emittanced at a for an Ar ¹⁺ beam with 10 mAat RFQ injection and 6.5 mAat the HSI exit. The Ar ¹⁰⁺ current (after stripping and charge state analysis) came up to 7 mA by gas stripper density

Fig. 3:MeasurementoftheemittancealongtheUNILAC.

variation. The measurements agreed to the calculation, if a measuringerrorofabout ± 15 % istaken into account.

Forhighcurrentoperation apepper-potsystem capable to measure the transversal emittance within one macropulsewasused, formore details see [2]. As an example Fig. 4 represents the variation of the beam emittance influenced by space charge forces due to an intensity increase of an Ar ¹⁰⁺-beam. The intensity variation is done in the LEBT section. Whereas the beam divergence measured after the prestripper does not change, a significant dependence of the beam distribution

after stripping and transport to the poststripper takes place. Thus intensity depending matching to the Alvarez acceleratorisinevitable.

BUNCHSHAPEMEASUREMENT

Bunch shape measurements were done using diamond detectors, whereas the ion beam (here Ar ¹⁺) passes athin Au-foil – the "Rutherford"-scattered particles hit the detector below as mallangle. The bunch shape is obtained by measuring the arrival time of the particles against a reference [1]. It was even possible to observe the typical "zero current" phase space distribution in longitudinal plane, leading to intensity peaks at the centre and at the beginning (resp. at the end) of the measured bunch shape.

Fig. 5: Bunch shape measurement for high and low currents; additionally the corresponding calculated longitudinalbeamemittancesarerepresented.

ONLINEMEASUREMENTOFTHE LONGITUDINALEMITTANCE

At the injection to the SIS the total momentum spread must be lower than 0.1%. The efficiency in setting the longitudinalbeamfocusingisconsiderably increased if an image of the longitudinal phase space distribution is available during the setting procedure. The proposed setup [4] for such an online measurement comprises an iris, magnetic bends, a vertical rf-chopper at 108 MHz, and a beamprofilescreen (Fig. 6).

The method is based on the transformation of the longitudinal particle coordinates into transverse coordinates. With the dispersion D_{x} after bending magnets the particles energy deviation dp/p_{i} is transformed at first orderintothehorizontal position

Fig. 6: Set- up for measurement of the longitudinal phase space distribution with horizontal (upper) and vertical (lower)beamenvelopes(solid)anddesignorbits(dotted)

 $x_i = D_x {\cdot} dp/p_i + O[\left(\epsilon_{x,i}\beta_x\right)^{1/2}].$

If the bunch passes a vertical rf-chopper the particles longitudinal phase $\varphi_{l,i}$ is transformed into a vertical kick, being avertical offsety i after a subsequent drift L.

 $y_i = L[const.U_{gap} \cdot sin(\varphi_{l,i})] + O[(\varepsilon_{y,i}\beta_y)^{1/2}],$

where U $_{gap}$ is the peak voltage in the chopper, $\varepsilon_{xy,i}$ is the single particle emittance, β_{xy} is the β -function at the screen, and O indicates terms that scale with the expression within the brackets. The constant includes the beam parameters and the geometry of the chopper. To obtain simple linear transformations, the transverse beam emittances are limited by an iris before the first bend. Additionally, asmall beamspot, i.e. β_{xy} must be set at the screen while the chopper is not active (Fig. 6. left). The energyspreaddominatestheminimizedspotsize. Afterwards the vertical rf-chopper is activated (Fig. 7, right)inordertofullvimagethelongitudinalphasespace distribution at the position of the chopper. The obtained resolution is given by the opening of the iris, by the dispersion, and by the resolution and size of the beam profile screen. Using an iris of 1 mm and an inter-wire distanceatthescreenof1mm,weexpectforanenergyof 11.4 MeV/uaresolutionof10 keV/uand3°(108 MHz)in energyspreadandinphasespread.respectively. The set-up for the longitudinal emittance measurement willbeinstalledandcommissionedinJune2003.

Fig. 7: Simulated beam spot image at the screen for a minimized beam size while the vertical rf- chopper is not active (left) and while it is active (right). The hori zontal axiscorrespondstotheenergyspreadandtheverticalaxis correspondstothephasespread(108 MHz).

REFERENCES

- W. Barth, Commissioning of the 1.4 MeV/u High Current Heavy Ion Linac at GSI, Proc. of LINAC2000,Monterey,USA,(2000).
- [2] P.Forck, et al., Measurement of the six dimensional Phase Space at te New GSI High Current Linac Proc.ofLINAC2000,Monterey,USA,(2000).
- [3] T. Hofmann et al., AIP proceedings of the Beam InstrumentationWorkshop,Boston(2000).
- [4] J.Glatz,GSIDarmstadt,privatecommunication.