A   B   C   D   E   F   G   H   I   K   L   O   P   Q   R   S   T   U   V  

luminosity

Paper Title Other Keywords Page
MOM1I01 Status of the Recycler Ring antiproton, electron, emittance, collider 1
 
  • P. Derwent
    Fermilab, Batavia, Illinois
  Funding: US Department of Energy

I will present the current operational status of the Fermilab Recycler Ring. Using a mix of stochastic and electron cooling, we prepare antiproton beams for the Fermilab Tevatron Collider program.

 
slides icon Slides  
 
MOM2I03 Progress of High-energy Electron Cooling for RHIC electron, ion, emittance, simulation 11
 
  • A. V. Fedotov
    BNL, Upton, Long Island, New York
  Funding: Work supported by the U. S. Department of Energy.

The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-II upgrade is to achieve 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/n. A significant increase in luminosity for polarized protons is also expected, as well as for other ion species and for various collision energies. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC recently adopted a non-magnetized approach which requires a low temperature electron beam. Such high-intensity high-brightness electron beams will be produced with superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

 
slides icon Slides  
 
MOA2C05 Calculations on High-energy Electron Cooling in the HESR electron, target, antiproton, emittance 44
 
  • D. Reistad, B. Gålnander, K. Rathsman
    TSL, Uppsala
  • A. O. Sidorin
    JINR, Dubna, Moscow Region
  Funding: This work is supported by Uppsala University through The Svedberg Laboratory and by the European Community under Contract Number 515873, DIRACsecondary-Beams

The HESR will work in a high-resolution mode with 1·1010 stored antiprotons and a high-luminosity mode with 1·1011 stored antiprotons. It will be equipped with both stochastic cooling and electron cooling systems. The main purpose of the electron-cooling system is to provide relative momentum spread in the antiproton beam of a few 1·10-5 (90 %) during experiments with an internal hydrogen pellet target and with luminosity 2·1031 – 2·1032 cm-2s-1. The hydrogen pellet target is expected to produce a stream of frozen hydrogen pellets with diameter 30 μm, which move with 60 m/s and at a rate of 20,000 s-1. The pellet stream is expected to have a diameter of 2–3 mm. Therefore, in order to avoid excessive fluctuations in the count rate, the antiproton beam size at the target must not be too small. This is solved by slightly tilting the electron beam with respect to the antiproton beam, thus making use of a so-called Hopf bifurcation. In order to get a high duty factor on another time scale, while not sacrificing momentum acceptance, a barrier-bucket rf. system will be employed. The electron-cooling system will initially be built for an antiproton energy range from 800 MeV to 9 GeV, but will be built so that its energy can be extended to the full energy of the HESR (14 GeV) at a later stage. The paper discusses the choice of parameters for the electron cooling system and presents simulations.

 
slides icon Slides  
 
TUA1I04 High-Energy Colliding Crystals – A Theoretical Study lattice, ion, collider, simulation 91
 
  • J. Wei
    BNL, Upton, Long Island, New York
  • H. Okamoto
    Hiroshima University, Higashi-Hiroshima
  • A. Sessler
    LBNL, Berkeley, California
  • H. Sugimoto, Y. Yuri
    HU/AdSM, Higashi-Hiroshima
  Funding: * Work performed under the auspices of the U. S. Department of Energy.

Recent theoretical investigations of beam crystallization mainly use computer modeling based on the method of molecular dynamics (MD) and analytical study based on phonon theory [1]. Topics of investigation include crystal stability in various accelerator lattices under different beam conditions, colliding crystalline beams [2], and crystalline beam formation in shear-free ring lattices with both magnets and electrodes [3]. In this paper, we review the above mentioned theoretical studies and, in particular, discuss the development of the phonon theory in a time-dependent Hamiltonian system representing a storage ring of AG focusing. Analytical study of crystalline beam stability in an AG-focusing ring was previously limited to the smooth approximation. In a typical ring, analytical results obtained under such approximation largely agrees with the results obtained with the molecular dynamics (MD) simulation method. However, as we explore ring lattices appropriate for beam crystallization at high energies (Lorentz factor gamma much higher than the betatron tunes) [2,4], this approximation fails. Here, we present a newly developed formalism to exactly predict the stability of a 1-dimensional crystalline beam in an AG focusing ring lattice.

[1] X.-P. Li, et al, PR ST-AB, 9, 034201 (2006). [2] J. Wei, A. M. Sessler, EPAC, 862 (1998)[3] M. Ikegami, et al, PR ST-AB 7, 120101 (2004).[4] J. Wei, H. Okamoto, et al, EPAC 2006.

 
slides icon Slides  
 
FRM2C06 Electron Cooling Simulations for Low-energy RHIC Operation electron, ion, simulation, emittance 243
 
  • A. V. Fedotov, I. Ben-Zvi, X. Chang, D. Kayran, T. Satogata
    BNL, Upton, Long Island, New York
  Funding: Work supported by the U. S. Department of Energy

Recently, a strong interest emerged in running RHIC at low energies in the range of 2.5-25 GeV/n total energy of a single beam. Providing collisions in this energy range, which in RHIC case is termed “low-energy” operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. Applying electron cooling directly at these low energies in RHIC would result in dramatic luminosity increase, small vertex distribution and long stores. On the other hand, even without direct cooling in RHIC at these energies, significant luminosity gain can be achieved by decreasing the longitudinal emittance of the ion beam before its injection into RHIC from the AGS. This will provide good RF capture efficiency in RHIC. Such an improvement in longitudinal emittance of the ion beam can be provided at by a simple electron cooling system at injection energy of AGS. Simulations of electron cooling both for direct cooling at low-energies in RHIC and for pre-cooling in AGS were performed, and are summarized in this report.

 
slides icon Slides