MOCP  —  Plenary Session (III)   (29-May-06   15:50—17:50)

Paper Title Page
MOCP01 Beam intensity upgrade at Fermilab 34
 
  • A. Marchionni
    Fermilab, Batavia, Illinois
 
MOCP02 High-power accelerators in China: status and outlook 39
 
  • J. Wei
    BNL, Upton, Long Island, New York
  • S. X. Fang, S. Fu
    IHEP Beijing, Beijing
 
  High intensity accelerator research is a relatively new subject in China. Recent program includes the accelerator-driven sub-critical power generation and the Beijing Spallation Neutron Source (BSNS) project. The Beijing Spallation Neutron Source (BSNS) is a newly approved project based on a H- linear accelerator and a rapid cycling synchrotron. During the past year, several major revisions were made on the design including the type of the front end, the linac frequency, the transport layout, the ring lattice, and the type of ring components. Possible upgrade paths were also laid out: based on an extension of the warm linac, the ring injection energy and the beam current could be raised doubling the beam power on target to reach 200 kW; an extension with a superconducting RF linac of similar length could raise the beam power near 0.5 MW. Based on these considerations, research and development activities are started. In this paper, we discuss the rationale of design revisions and summarize the recent works.  
MOCP03 Status of the LHC 44
 
  • R. Schmidt
    CERN, Geneva
 
  For the LHC to provide particle physics with proton-proton collisions at a centre of mass energy of 14 TeV with a luminosity of 1034 cm-2s-1, the machine will operate with high-field dipole magnets using NbTi superconductors cooled to below the λ point of helium. The construction follows a decade of intensive R&D and technical validation of major collider sub-systems. Installation of the accelerator system is in full swing. Commissioning of the injector complex is well advanced, including beam transfer through one of the transfer lines from SPS to LHC. In the LHC machine, commissioning of the cryogenic system and powering system has started. The status of the LHC accelerator and a brief outlook to operation and its consequences for the machine protection systems will be given. The strategy for the machine protection and beam cleaning will have a major impact on commissioning and operation since each of the two LHC proton beam has a stored energy of about 360 MJ. A fraction of less than 10-3 of the full beam threatens to damage accelerator equipment in case of uncontrolled beam loss, and only 10-8 protons could already quench a magnet.  
MOCP04 LHC Upgrade Options and CARE-HHH Activities 49
 
  • F. Zimmermann
    CERN, Geneva
 
  The European Accelerator Network on High Energy High Intensity Hadron Beams (CARE HHH) is developing scenarios for luminosity and energy upgrades of the Large Hadron Collider (LHC). The LHC upgrade options under consideration differ in terms of beam parameters, electron-cloud effects, beam-beam compensation, use of crab cavities, and interaction-region layout. Complementary investigations concern injector upgrades, novel magnet technologies, advanced collimation schemes, and ultimate intensity limitations. Flanking these upgrade studies, an accelerator-physics code web repository has been set up, and an extensive simulation-code benchmarking campaign is being prepared.