A   B   C   D   E   F   H   I   K   L   O   P   Q   R   S   T   V    

rfq

Paper Title Other Keywords Page
MOAP01 Approach to a very high intensity beam at J-PARC linac, proton, injection, hadron 1
 
  • Y. Yamazaki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
MOBP01 ISIS Upgrades – A Status Report synchrotron, target, proton, linac 20
 
  • D. J.S. Findlay
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  Since 2002 several accelerator upgrades have been made to the ISIS spallation neutron source at the Rutherford Appleton Laboratory in the UK, and upgrades are currently continuing in the form of the Second Target Station Project. The paper will review the upgrade processes, and will also look forward to possible future schemes at ISIS beyond the Second Target Station.  
 
TUAY02 End-to-end beam dynamics for CERN Linac4 linac, emittance, quadrupole, booster 79
 
  • A. M. Lombardi, G. Bellodi, J.-B. Lallement, S. Lanzone, E. Zh. Sargsyan
    CERN, Geneva
  • M. A. Baylac
    LPSC, Grenoble
  • R. Duperrier, D. Uriot
    CEA, Gif-sur-Yvette
  LINAC 4 is a normal conducting H- linac which aims to intensify the proton flux available for the CERN accelerator complex. This injector is designed to accelerate a 65 mA beam of H- ions up to 160 MeV for injection into the CERN Proton Synchrotron Booster. The acceleration is done in three stages : up to 3 MeV with a Radio Frequency Quadrupole (the IPHI RFQ) operating at at 352 MHz, then continued to 90 MeV with drift-tube structures at 352 MHz (conventional Alvarez and Cell Coupled Drift Tube Linac) and, finally, with a Side Coupled Linac at 700MHz. The accelerator is completed by a chopper line at 3 MeV and a transport and matching line to the PS booster. After the overall layout was determined based on general consideration of beam dynamics and RF, a global optimisation based on end-to-end simulation has refined some design choices. The results and lessons learned from the end-to-end simulations are reported in this paper.  
 
TUAY03 Design of the Driver Linac for the Rare Isotope Accelerator linac, ion, heavy-ion, acceleration 89
 
  • P. N. Ostroumov, J. A. Nolen, K. W. Shepard
    ANL, Argonne, Illinois
  The proposed design of the Rare Isotope Accelerator (RIA) driver linac is based on cw fully superconducting 1.4 GV linac capable to accelerate uranium ions up to 400 MeV/u and protons to 1 GeV with 400 kW beam power. Extensive research and development effort has resolved many technical issues related to the construction of the driver linac and other systems of the RIA facility. Particularly, newly developed high-performance SC cavities will provide the required voltage for the driver linac using 300 cavities designed for six different geometrical betas. We are currently looking at alternatives for staging the facility to reduce the initial cost by about a factor of two. A possibility for the first stage includes ~850 MV driver linac to deliver uranium beams at 200 MeV/u and protons at 550 MeV. Thanks to successful tests of the front end systems, 400 kW beams can be obtained with increased intensities of heavy-ion beams from the ECR and higher rf power in the linac even at the first stage of the facility.  
 
TUAY04 Beam Dynamics Design of the PEFP 100 MeV Linac linac, proton, quadrupole, emittance 99
 
  • J.-H. Jang, Y.-S. Cho, K. Y. Kim, Y.-H. Kim, H.-J. Kwon
    KAERI, Daejon
  The Proton Engineering Frontier Project (PEFP) is constructing a 100 MeV proton linac in order to provide 20 MeV and 100 MeV proton beams. The linac consists of a 50 keV proton injector including an ion source and a low energy beam transport (LEBT), a 3 MeV radio-frequency quadrupole (RFQ), a 20 MeV drift tube linac (DTL), a medium energy beam transport (MEBT), and the higher energy part (20 MeV ~ 100 MeV) of the 100 MeV DTL. The MEBT is located after the 20 MeV DTL to extract 20 MeV proton beams. The 20 MeV part of the linac was completed and is now under beam test. The higher energy part of the PEFP linac was designed to operate with 8% beam duty. This brief report discusses the design of the PEFP 100MeV linac as well as the MEBT.  
 
TUBY02 Physics Design of a Multi-GeV Superconducting H-minus Linac linac, focusing, proton, lattice 134
 
  • P. N. Ostroumov
    ANL, Argonne, Illinois
  • G. Apollinari, G. W. Foster, R. C. Webber
    Fermilab, Batavia, Illinois
  We discuss design of a pulsed linac based on 430 independently phased superconducting resonators for acceleration of 40 mA peak current H-minus beam up to 8-GeV. Most of the voltage gain (from ~410 MeV to 8 GeV) is provided by ILC cavities and squeezed ILC-style cavities operating at 1300 MHz. Significant cost savings are expected from the use of an rf power fan out from high-power klystrons to multiple cavities. The front end of the linac operating at 325 MHz will be based on multiple-spoke cavities. A room temperature section comprised of a conventional RFQ and 16 short normal conducting H-type resonators is proposed for the initial acceleration of an H-minus or proton beam up to 10 MeV. We have developed an accelerator lattice which satisfies the beam physics and engineering specifications.  
 
TUBY05 A HIGH ENERGY GAIN DEUTERON LINAC linac, simulation, emittance, lattice 156
 
  • J. Rodnizki, D. Berkovits, K. Lavie, A. Shor, Y. Yanai
    Soreq NRC, Yavne
  The beam dynamic simulation of the SARAF 40 MeV, 4 mA deuteron beam superconducting linac is extended in this work to 90 MeV for the EURISOL driver. It is designed for a high energy gain gradient with a moderate emittance growth, based on an end-to-end 3D simulation using a detailed 40 k macro particles distribution at the RFQ exit. The linac consists of 84 superconducting HWRs and one superconducting solenoid per two HWRs. The result average energy gain is 2.0 MeV/m. At the linac first cryomodule, where the  mismatch is high, the emittance growth is controlled by considering the bunch acceleration phase at each of the HWR coupled acceleration gaps.  
 
WEBX04 Measurement strategy for the CERN Linac4 Chopper-line linac, quadrupole, simulation, booster 262
 
  • J.-B. Lallement, K. Hanke, H. Hori, A. M. Lombardi, E. Zh. Sargsyan
    CERN, Geneva
  Linac4 is a new accelerator under study at CERN. It is designed to accelerate H- ions to 160 MeV of energy, for injection into the existing Proton Synchrotron Booster. The low energy section, comprising an H- ion source, a 352 MHz Radio Frequency Quadrupole and a 3 MeV chopper line will be assembled at CERN in the next years. Linac 4 is also designed as an injector for the SPL, a high power proton driver delivering 5MW at 3.5 GeV. In this case the beam losses must be limited to 1 W/m and therefore the formation of transverse and longitudinal halo at low energy becomes a critical issue which has to be measured and controlled. The chopper-line is composed of 11 quadrupoles, 3 bunchers and the chopper itself. Its beam dynamics will be characterized with specific detectors and diagnostic lines. In particular the transverse and longitudinal halo will be measured by a Beam Shape and Halo Monitor (BSHM) with a sensitivity of 10.000 particles per bunch and a time resolution of 2ns. In this paper we present the simulation work in preparation for the measurement campaign scheduled in 2008.  
 
THBY01 Acceleration of Intense Beams of Highly-Charged Ions using Direct Plasma Injection Scheme ion, extraction, target, plasma 341
 
  • A. Kondrashev
    ITEP, Moscow
  • R. A. Jameson, M. Okamura
    RIKEN, Saitama
  • T. Kanesue
    Kyushu University, Fukuoka
  • H. Kashiwagi
    JAEA/ARTC, Gunma-ken
  • K. Sakakibara
    RLNR, Tokyo
  • J. Tamura
    TIT, Yokohama
  Laser Ion Source (LIS) is the most intense source of highly-charged ions capable to provide beams with current 10 / 100 mA and pulse durations 1 / 10 μs. Such parameters well meet requirements of single turn injection into synchrotron rings and FFAG. Few years ago Direct Plasma Injection Scheme (DPIS) was proposed to extract and accelerate intense ion beams from laser induced plasma. By this approach extraction of ions happens almost inside first acceleration cell of RFQ, eliminating severe space charge problems in LEBT and LEBT itself. About 35 mA of 12C4+ ions and 17 mA of 12C6+ ions were accelerated by RFQ up to 100 keV/u using DPIS. Amplitude of total current of carbon ions is equal to 60 mA. The latest results on 27Al and 56Fe ions acceleration using DPIS are presented. The results obtained show that DPIS is, probably, the best choice as a high current injector of highly-charged ions for FFAG.