Author: Liepe, M.
Paper Title Page
MOP061 75 mA Operation of the Cornell ERL Superconducting RF Injector Cryomodule 259
 
  • M. Liepe, B.M. Dunham, R.G. Eichhorn, G.H. Hoffstaetter, R.P.K. Kaplan, P. Quigley, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by the National Science Foundation (Grant No. DMR-0807731).
Cornell University has developed a SCRF injector cryomodule for the acceleration of high current, low emittance beams in continuous wave operation. This cryomodule is based on 1.3 GHz superconducting RF technology, and has been tested extensively in the Cornell ERL injector prototype with world record CW beam currents exceeding 70 mA. High CW RF power input couplers and strong Higher-Order-Mode damping in the cavities are essential for high beam current operation. This paper summarizes the performance of the cryomodule during the high beam current operation.
 
 
MOP071 Record Quality Factor Performance of the Prototype Cornell ERL Main Linac Cavity in the Horizontal Test Cryomodule 300
 
  • N.R.A. Valles, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Supported by NSF grant DMR-0807731
Future SRF linac driven accelerators operated in CW mode will require very efficient SRF cavities with high intrinsic quality factors Q at medium accelerating fields. Cornell has recently finished testing the fully equipped 1.3 GHz, 7-cell main linac cavity for the Cornell Energy Recovery Linac in a horizontal test cryomodule (HTC). Measurements characterizing the fundamental mode’s quality factor have been completed, showing record Q performance. In this paper, we present detailed quality factor vs gradient results for three HTC assembly stages. We show that the performance of an SRF cavity can be maintained when installed into a cryomodule, and that thermal cycling reduces residual surface resistance. We present world record results for a fully equipped multicell cavity in a cryomodule, reaching intrinsic quality factors at operating accelerating field of Q(E =16.2 MV/m, 1.8K) > 6·1010 and Q(E =16.2 MV/m, 1.6K) > 1.0·1011, corresponding to a very low residual surface resistance of 1.1 nOhm.
 
 
MOP086 Integration, Commissioning and Cryogenics Performance of the ERL Cryomodule Installed on ALICE-ERL Facility at STFC Daresbury Laboratory, UK 349
 
  • S.M. Pattalwar, R.K. Buckley, P.A. Corlett, P. Goudket, A.R. Goulden, A.J. May, P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.A. Belomestnykh
    BNL, Upton, Long Island, New York, USA
  • A. Büchner, F.G. Gabriel, P. Michel
    HZDR, Dresden, Germany
  • E.P. Chojnacki, J.V. Conway, R.G. Eichhorn, G.H. Hoffstaetter, M. Liepe, H. Padamsee, P. Quigley, J. Sears, V.D. Shemelin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M.A. Cordwell, T.J. Jones, L. Ma, A.J. Moss, J. Strachan
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • J.N. Corlett, D. Li, S.M. Lidia
    LBNL, Berkeley, California, USA
  • T. Kimura
    Stanford University, Stanford, California, USA
  • R.E. Laxdal
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
  • T.J. Smith
    SLAC, Menlo Park, California, USA
 
  On successful assembly and preliminary testing of an optimised SRF cryomodule for application on ERL accelerators, which is being developed through an international collaboration the cryomodule has been installed on the 35 MeV ALICE (Accelerators and Lasers in Combined Experiments) Energy Recovery Linac (ERL) facility at STFC Daresbury Laboratory. Existing cryogenic infrastructure has a capacity to deliver approximately 120 W cooling power at 2 K, but the HOM (Higher Order Mode) absorbers, the thermal intercepts for the high power RF couplers and the radiation shield in the cryomodule are designed to be cooled (to 5 K and 80 K) with gaseous helium instead of liquid nitrogen. As a result the cryogenic infrastructure for ALICE had to be modified to meet these additional requirements. In this paper we describe our experience with the process of integration and the cryogenic commissioning, and present some initial results.  
 
TUIOA05 New Insights Into Quench Caused by Surface Pits in SRF Cavities 378
 
  • Y. Xie, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by NSF Career award PHY-0841213 and the Alfred P. Sloan Foundation.
Surface defects such as pits have been identified as some of the main sources of limitations of srf cavity performance. A single cell cavity with 30 artificial pits in the high magnetic field region was made to gain new insight in how pits limit the cavity performance*. The test of the pit cavity showed clear evidence that the edges of two of the largest radius pits transitioned into the normal conducting state at field just below the quench field of the cavity, and that the quench was indeed induced by these two pits. The pit geometrical information measured by laser confocal microscopy combined with a numerical finite element ring-type defect model will be compared with temperature mapping results. Insights about quench and non-linear rf resistances will be presented.
*Y. Xie, PhD thesis, Cornell University, 2013
 
slides icon Slides TUIOA05 [3.101 MB]  
 
TUIOC01
Review on EP Advances Worldwide  
 
  • F. Furuta, B. Elmore, G.H. Hoffstaetter, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Electro-Polishing is now applying on SRF Nb cavity world widely as baseline surface treatment technique in many projects, such as ILC, XFEL, JlabUpgrade, and so on. I will give some review on EP as titled, report the achievements and the newest R&D topics of EP.  
slides icon Slides TUIOC01 [20.715 MB]  
 
TUP026 Performance of a FNAL Nitrogen Treated Superconducting Niobium Cavity at Cornell 475
 
  • D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Grassellino
    Fermilab, Batavia, USA
 
  Funding: NSF
In many tests of superconducting cavities, the performance of the cavity in the medium field region will be limited by medium field Q slope. For projects such as the proposed Cornell Energy Recovery Linac, high Q operation at medium fields is necessary to meet specifications for efficient CW cavity operation. A single cell cavity was prepared by Fermilab by electropolishing it and baking it at 1000°C with 1x10-2 Torr of Nitrogen, and subsequently tested at Cornell. The cavity displayed an increase in Q at medium fields between 5 and 20 MV/m at 2.0 K, opposite of the usual medium field Q slope. The material properties of this cavity were studied and correlated with performance. This analysis helps to better understand how to overcome medium field Q slope and improve cavity performance in future CW SRF machines such as the Cornell ERL.
 
 
TUP027 High Q0 Studies at Cornell 478
 
  • D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF
The construction and preparation of superconducting RF cavities with very high quality factors is very advantageous for future particle accelerators operating in CW mode. Until recently, the highest quality factors measured in SRF cavities were on the order of 1011. A Cornell ERL single-center-cell cavity was prepared with BCP and a five day heat treatment at 1000°C. Following this treatment, the cavity was tested and achieved a record high intrinsic quality factor of 2.9·1011 at 1.4 K, corresponding to a very small residual resistance of (0.35±0.10) nOhm. This cavity was then given a series of BCP’s of 5, 75, and 200 μm and retested. Material properties were extracted from the data hinting at a very low mean free path of the niobium. In this paper we discuss the unusual material properties of the surface layer of the cavity and their implication for the RF performance of the cavity.
 
 
TUP028 Investigation of Spatial Variation of the Surface Resistance of a Superconducting RF Cavity 483
 
  • D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • R.E. French
    Corning Community College, Corning, USA
 
  Funding: NSF
Cornell has recently completed a single cell temperature mapping system with a resolution of a few tenths of a millikelvin, corresponding to a surface resistance resolution of 1 nOhm. A superconducting RF cavity was tested using temperature mapping and the surface resistance was extracted from the temperature mapping data as function of position on the cavity surface. The surface resistance was profiled across the surface of the cavity between 5 and 35 MV/m and at different temperatures between 1.6 and 2.1 K. From BCS fitting of the local surface resistance, the spatial variation and the field dependence of the mean free path, energy gap, and residual resistance was found. These studies give interesting new insight into the degree of variation of the properties of the superconductor over the surface of the cavity.
 
 
TUP029 Heat Treatment of SRF Cavities in a Low-Pressure Atmosphere 487
 
  • D. Gonnella, F. Furuta, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: NSF
Recent results from FNAL on baking superconducting RF cavities at high temperatures in a low-pressure atmosphere of a few mTorr indicate that such treatments can increase the medium field quality factor. In this paper we report on studies from Cornell, giving new insight into the mechanism behind this effect.
 
 
TUP031
Muon Spin Rotation Studies of Bulk Electropolished Cavity Cutouts and Thin Films of Alternative Materials  
 
  • A. Grassellino, A. Romanenko, D.A. Sergatskov
    Fermilab, Batavia, USA
  • T. Buck, R.E. Laxdal
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • M. Liepe, S. Posen
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • Y. Trenikhina
    IIT, Chicago, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
In the previous studies [*] magnetic flux penetration into fine and large grain BCP cavity cutouts was investigated using the muon spin rotation (muSR) technique. The technique is based on implanting muons, which serve as sensitive magnetic probes inside the material. Here we report muSR studies on fine grain EP cavity cutouts, both before and after 120C baking, and on the films of new materials.
[*] A. Grassellino et al, Phys. Rev. ST Accel. Beams 16, 062002 (2013)
 
 
TUP048 Preparations and VT Results of ERL7-cell at Cornell 521
 
  • F. Furuta, B. Bullock, R.G. Eichhorn, B. Elmore, A. Ganshin, G.M. Ge, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We have fabricated 7 ERL 7-cell cavities for Cornell ERL project. 4 nu-stiffened and 3-stiffened cavities have been fabricated in house so far. Specification values of our 7-cell is 16.2MV/m with Qo of 2.0·1010 at 1.8K. In this report, we will describe our surface treatments recipe which is based on BCP and the results of vertical tests of these 7-cell cavities.  
 
TUP049 Cornell VEP Update, VT Results and R&D on Nb Coupon 524
 
  • F. Furuta, B. Elmore, G.H. Hoffstaetter, D.K. Krebs, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell's SRF group have been led development of Vertical Electro-Polishing(VEP) on SRF Nb Cavity. We have done many VEP on singel-/multi-cell cavities. We also have started VEP'ed Nb coupon surface analysis based on surface roughness measurement. In this report, we will describe our status of VEP R&D, the results of VEP'ed cavity vertical testing, and fundamental study on VEP using Nb coupons.  
 
TUP059 TM-Furnace Qualification at Cornell 561
 
  • F. Furuta, B. Bullock, R.G. Eichhorn, A. Ganshin, G.M. Ge, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell's SRF group had new vacuum furnace for hydrogen degassing of SRF Nb cavity. Systematic study and testing have been done to qualify this new furnace. We will report the results of those qualification tests include cavity bake and vertical testing.  
 
TUP072 Quality Factor Measurements of the Ultramet 3 GHz Cavity Constructed Using Chemical Vapour Deposition 607
 
  • D.L. Hall, D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.M. Arrieta, S.R. McNeal
    Ultramet, California, USA
 
  Funding: US Department of Energy Phase 1 Small Business Innovation Research award to Ultramet
A seamless 3 GHz bulk niobium cavity constructed by Ultramet using rapid chemical vapor deposition (CVD) techniques has been tested on the vertical SRF test stand at Cornell. The cavity received a 25 um buffered chemical polish (BCP) and 700 C heat treatment for 4 days. First test results gave an intrinsic quality factor of Q0 = (1.55 ± 0.12) x 107 and (2.00 ± 0.15) x 107 at 4.2 K and 1.5 K, respectively. A second BCP removed 100 um of material, after which test results improved to Q0 = (7.59 ± 1.52) x 107 and (4.16 ± 0.31) x 108 at 4.2 K and 1.5 K. During the first test poor coupling to the input amplifier impeded tests at accelerating fields >0.2 MV/m, while during the second test the cavity quenched at 1.3 MV/m when operating at 1.5 K. An optical inspection of the cavity after the second test revealed the presence of at least 4 pits on the upper hemisphere suggesting an area of higher than average surface resistance that may have contributed to the low field quench via thermal runaway. The potential of CVD as a construction method for SRF cavities is discussed.
 
 
TUP087 RF Test Results of the first Nb3Sn Cavities Coated at Cornell 666
 
  • S. Posen, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  As an alternative material to niobium for SRF cavities in particle accelerators, Nb3Sn presents two significant advantages. With a Tc of 18 K, it has a very small surface resistance at a given temperature, leading to a significant reduction in cryogenic costs; and with a predicted Hsh of nearly 400 mT, it has the potential to produce cavities with higher gradients and therefore shorter high energy linacs. Recently, two 1.3 GHz cavities have been fabricated and coated with Nb3Sn at Cornell. Tests of these first cavities have produced encouraging results, including a very high Tc and some very high-performing surface regions. These cavity results as well as new results of samples studied using TEM will be presented.  
 
TUP105 Investigation of the Surface Resistivity of SRF Cavities via the Heat and Srimp Program as Well as the Multi-Cell T-Map System 724
 
  • G.M. Ge, D. Gonnella, G.H. Hoffstaetter, M. Liepe, H. Padamsee
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Furuta
    Cornell University, Ithaca, New York, USA
 
  A high-sensitive temperature mapping system for multi-cell SRF cavities has been constructed at Cornell University. The resolution of the system is 1mK. Hence it’s able to detect small temperature increases when cavities reach at low accelerating gradients e.g. 3MV/m. The surface resistivity of superconductor under radio-frequency electromagnetic field can be calculated from the temperature increases. In this contribution, the surface resistance map of multi-cell SRF cavities is shown. The temperature mapping result is possible to establish a relationship between the surface resistivity and the magnetic field as well. Unlike the RF method which is average value of the surface resistance, the T-map results give local surface resistivity versus magnetic field. BCS theory assumes the surface resistivity is independent to the magnetic field. The T-map results, however, suggest that the surface resistance at high-loss region is field dependent and caused Q-slope.  
 
WEIOA04 Nb3Sn for SRF Application 773
 
  • M. Liepe, S. Posen
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The superconductor Nb3Sn is a promising alternative to standard niobium for SRF applications for two reasons: Its larger superconducting energy gap results in significantly lower BCS surface resistance at typical SRF operating temperatures. Additionally, theoretical predictions suggest that the maximum operating field of Nb3Sn cavities could be twice that of niobium cavities. Early work on a small number of Nb3Sn coated cavities indeed showed 2K to 4.2K quality factors well above what is achievable with niobium, though at accelerating fields below ~10 MV/m only. After many years of worldwide inactivity, Cornell has taken the lead and initiated a new R&D program on Nb3Sn to explore its full potential for SRF applications. New facilities for coating cavities with Nb3Sn have been set up at Cornell, and 1.3 GHz single cell cavities have been coated and tested. This talk presents the Cornell Nb3Sn program, discusses first promising results obtained, and also gives an overview of other Nb3Sn SRF work worldwide.  
slides icon Slides WEIOA04 [3.854 MB]  
 
WEIOC04 Theoretical Field Limits for Multi-Layer Superconductors 794
 
  • S. Posen, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • G. Catelani
    Forschungszentrum Jülich, Peter Gruenberg Institut (PGI-2), Jülich, Germany
  • J.P. Sethna
    Cornell University, Ithaca, New York, USA
  • M.K. Transtrum
    M.D.A.C.C., Houston, Texas, USA
 
  With modern cavity preparation techniques, niobium SRF cavities reach surface magnetic fields very close to the fundamental limit of the superheating field of the material, and researchers are looking to alternative superconductors to sustain even higher fields. However, these materials may have an increased vulnerability to flux penetration at defects, even small ones, as a result of their short coherence lengths. A. Gurevich has proposed [1] a method of mitigating this vulnerability: coating a bulk superconducting cavity with a series of very thin insulating and superconducting films. In this work, we present a thorough mathematical description of the SIS thin films proposed by Gurevich in the language of the SRF community, to help researchers to optimize cavities made from alternative superconductors.
[1] A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006)
 
slides icon Slides WEIOC04 [4.116 MB]  
 
THIOB02 High Q Cavities for the Cornell ERL Main Linac 844
 
  • R.G. Eichhorn, B. Bullock, B. Clasby, B. Elmore, F. Furuta, A. Ganshin, G.M. Ge, D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V.D. Shemelin, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  While SRF research for linear colliders was focused on achieving high gradients, Cornell’s proposal for an energy recovery linac (ERL) demanded for low cw losses. Starting several years ago, a high-Q R&D phase was launched that led to remarkable results recently: A fully dressed cavity (7 cells, 1.3 GHz) with side-mounted input coupler and beamline HOM absorbers achieved a Q of 3.5·1010 ((16 MV/m, 1.8 K). This talk will review the staged approach we have chosen in testing a single cavity in a horizontal short cryomodule (HTC), report results on each step and conclude on our findings about preserving high Q from vertical testing. We also discuss the production of six additional cavities as we progress toward constructing a full 6-cavity cryomodule as a prototype for Cornell’s main linac module  
slides icon Slides THIOB02 [8.378 MB]  
 
THP008
High Voltage Cavity R&D at Cornell, RE and ICHIRO  
 
  • F. Furuta, B. Elmore, A. Ganshin, G.M. Ge, G.H. Hoffstaetter, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We have been investigated 1.3GHz high gradient SRF Nb cavity with shape of low Hpk/Eacc, such as re-entrant(RE) and KEK low-loss (ICHIRO) shapes. We have single-/multi-cell RE cavities and ICHIRO single-cell cavities at Cornell. We have processed those cavities based on buffered chemical-polishing(BCP), vertical electro-polishing(VEP), and centrifugal barrel-polsihing(CBP). In this paper, we will report the details of processes and the results of vertical tests of these cavities.  
 
THP038 Development and Performance of a High Field TE-Mode Sample Host Cavity 985
 
  • D.L. Hall, M. Liepe, I.S. Madjarov, K.P. McDermott, N.R.A. Valles
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: US National Science Foundation Career award PHY-0841213
A TE-mode 4 GHz sample host cavity has been designed and constructed at Cornell for the purpose of testing wafers of niobium and other candidates for the construction of SRF cavities. Simulations made using CLANS and ACE3P indicate that the peak magnetic field on the sample plate will reach approximately 120 mT before a quench occurs on the surface of the cavity due to thermal runaway. This quench field can be further increased using a 1400 C treatment to improve the thermal conductivity of the niobium bulk and a 120 C treatment to minimise the BCS surface resistance of the cavity walls. Such an improvement would put peak fields of 170 mT within reach of this cavity. Results of the cavity design, fabrication and first vertical test are presented and discussed.
*Development of Superconducting RF Sample Host Cavities and study of Pit-Induced Cavity Quench, Yie Xie, PhD Thesis, Cornell University, Jan 2013
 
 
THP071 HOM Studies of the Cornell ERL Main Linac Cavity in the Horizontal Test Cryomodule 1090
 
  • N.R.A. Valles, R.G. Eichhorn, D.A. Goldman, G.H. Hoffstaetter, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Supported by NSF grant DMR-0807731
The Cornell energy recovery linac will accelerate a 100 mA beam to 5 GeV, while maintaining very low emittance (30 pm at 77 pC bunch charge). A major challenge to running such a large current continuously through the machine is the effect of strong higher-order modes (HOMs) in the SRF cavities that can lead to beam breakup. This paper presents the results of HOM studies for the prototype 7-cell cavity installed in a horizontal test cryomodule (HTC). HOM measurements were done for three HTC assembly stages, from initial measurements on the bare cavity to being fully outfitted with side-mounted RF input coupler and beam line HOM absorbers. We compare the simulated results of the optimized cavity geometry with measurements from all three HTC experiments, demonstrating excellent damping of all dipole higher order modes.