A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

superconducting-magnet

Paper Title Other Keywords Page
MO6PFP044 Superconducting Magnets for a Final Focus Upgrade of ATF2 quadrupole, sextupole, cryogenics, monitoring 235
 
  • B. Parker, M. Anerella, J. Escallier, P. He, A.K. Jain, A. Marone
    BNL, Upton, Long Island, New York
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P.A. Coe, D. Urner
    OXFORDphysics, Oxford, Oxon
  • C. Hauviller
    CERN, Geneva
  • A. Seryi
    SLAC, Menlo Park, California
  • T. Tauchi, K. Tsuchiya, J. Urakawa
    KEK, Ibaraki
 
 

Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.


The Accelerator Test Facility (ATF2) at KEK is a scaled down version of the final focus design proposed for the future linear colliders (LC) and aims to experimentally verify the final focus (FF) technology needed to obtain very small, stable beam spots at a LC interaction point. Initially the ATF2 FF is made using conventional (warm) quadrupole and sextupole magnets; however, we propose to upgrade the FF by replacing some of the conventional magnets with new superconducting magnets constructed with the same technology as those of the International Linear Collider baseline FF magnets*. With the superconducting magnet upgrade we can look to achieve smaller interaction point beta-functions and to study superconducting magnet vibration stability in an accelerator environment. Therefore for the ATF2 R&D magnet we endeavor to incorporate cryostat design features that facilitate monitoring of the cold mass movement via interferometric techniques. The design status of the ATF2 superconducting upgrade magnets is reported in this paper.


*International Linear Collider Reference Design Report, ILC-REPORT-2007-001, August 2007.

 
MO6PFP049 Methods to Detect Faulty Splices in the Superconducting Magnet System of the LHC dipole, cryogenics, quadrupole 247
 
  • J. Strait
    Fermilab, Batavia
  • R. Bailey, M. Bednarek, B. Bellesia, N. Catalan-Lasheras, K. Dahlerup-Petersen, R. Denz, C. Fernandez-Robles, R.H. Flora, E. Gornicki, M. Koratzinos, M. Pojer, L. Ponce, R.I. Saban, R. Schmidt, A.P. Siemko, M. Solfaroli Camillocci, H. Thiesen, A. Vergara-Fernández
    CERN, Geneva
  • Z. Charifoulline
    RAS/INR, Moscow
  • P. Jurkiewicz, P.J. Kapusta
    HNINP, Kraków
 
 

The incident of 19 September 2008 at the LHC was apparently caused by a faulty inter-magnet splice of about 200 nOhm resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The quench protection system is used in a special mode to measure the voltage across each magnet with an accuracy better than 0.1 mV, allowing internal splices with R > 10 nOhm to be detected. Since this system does not cover the bus between magnets, the cryogenic system is used in a special configuration* to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved. This allows detection of excess resistance of more than a few tens of nOhms in a cryogenic sub-sector (2 optical cells). Follow-up measurements, using an ad-hoc system of high-accuracy voltmeters, are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 nOhms and 50 nOhms respectively. In 2009, this ad-hoc system will be replaced with a permanent one which will monitor all splices at the nOhm level.


*L. Tavian, Helium II Calorimetry for the Detection of Abnormal Resistive Zones in LHC Sectors, this conference.

 
MO6PFP050 Hysteresis Effects of MCBX Magnets on the LHC Operation in Collision injection, simulation, controls, collider 250
 
  • N.J. Sammut, C. Giloux, M. Lamont, W. Venturini Delsolaro, S.M. White
    CERN, Geneva
 
 

The Large Hadron Collider beams are brought into collision by superconducting orbit corrector magnets which generate the parallel separation and crossing angles at the interaction points during the different cycle phases. Unfortunately, the magnetic field errors that result from hysteresis effects in the operation region of these magnets lead to unwanted orbit perturbations. In a previous paper, it has been shown that these effects are within the perturbations coming from beam-beam interactions for the MCBC and the MCBY magnets but are significant in the case of the MCBX magnets. This paper presents a refined model of their field in the frame of the Field Description for the LHC (FiDeL), the results obtained from new magnetic measurements in cold conditions to test the model, the powering mechanism employed to maximize their field reproducibility, and the impact the modeling error is predicted to have on the LHC orbit.

 
MO6PFP051 Earth Current Monitoring Circuit for Inductive Loads monitoring, extraction, instrumentation, high-voltage 253
 
  • V. Montabonnet, S. Pittet, Y. Thurel
    CERN, Geneva
  • P. Cussac
    CIRTEM, Labege CEDEX
 
 

The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the CERN-LHC converters for the superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress on each circuit component is analyzed and advice is given for a totally safe component selection in relation to a given load.

 
MO6PFP054 Pre-Cycle Selection for the Superconducting Main Magnets of the Large Hadron Collider injection, coupling, dipole, collider 259
 
  • A.P. Verweij, N.J. Sammut, W. Venturini Delsolaro, R. Wolf
    CERN, Geneva
 
 

Pre-cycles for setting up the main magnets of the Large Hadron Collider are necessary for ensuring field reproducibility and low field-decay rates at injection. In this paper we propose standard pre-cycles for the main magnets of the LHC. We study the influence of the pre-cycle parameters on the field decay at injection by two different models. One already proven model is semi-empirical based on magnetic measurements of the magnets. The other is a new network based model of a Rutherford cable which directly calculates the current redistribution and associated magnetization change in the cable strands. The pre-cycle to be used may depend on the history of the machine or may have to be changed because of unforeseen phenomena in the machine. The choice of a new pre-cycle on the basis of magnetic measurements alone is a lengthy process. We confirm the usefulness of the network based model as a tool for selecting new pre-cycles, including decay-blocking degaussing pre-cycles, and compare with magnetic measurements.

 
MO6PFP074 Stress Computation in the C400 Superconducting Coil Using the Opera-2d Stress Analysis Module cyclotron, solenoid, superconductivity, FEL 304
 
  • W. Beeckman
    Sigmaphi, Vannes
  • J. Simkin
    Vector Fields Ltd., Oxford
  • M.N. Wilson
    Oxford Instruments, Accelerator Technology Group, Oxford, Oxon
 
 

A tender for the study and construction of a large superconducting split solenoid for the C400 carbon therapy cyclotron was issued by IBA in March 2008 and awarded to Sigamphi. Although the current density is moderate, the large radius and average field imply quite a high level of hoop stress. Simple formulas range between 140 and 180 MPa and, with such large values and uncertainties, it was felt necessary to perform a finite element analysis of the structure. Average fields in a cyclotron are very well modeled using an axially symmetrical structure and the stress was therefore studied using the stress module of the Vector Fields Opera2d suite. Different models were tried with different levels of details. A comparison is made between them as well as with the analytical results.

 
TU1RAI03 Performance of the LHC Magnet System dipole, quadrupole, vacuum, cryogenics 624
 
  • L. Rossi, V. Parma
    CERN, Geneva
 
 

The LHC magnet system has been largely commissioned in 2007-08: all sectors up to 7 kA (4 TeV proton beam energy); six (out of eight) sectors were commissioned up 9.3 kA (5.5 TeV) and one to 11.5 kA (6.9 TeV). For more than one week, both beams have been injected, circulated and captured in the RF bucket, thus assessing the optics at injection energy. The incident in sector 3-4, originated by a serious defect of a high-current joint between magnets with large collateral damage, has changed the plans: magnets in the damaged zone (about 50) are being substituted or repaired meanwhile a campaign of consolidation is under way. During commissioning, the training of the main dipoles was longer than expected on the basis of reception tests of individual magnets , thus pointing to a partial loss of quench memory. The thermal performance is within heat losses estimates and the spectacular easiness of the first injection test on 10th September has demonstrated the very good field quality, precise understanding of magnetic characteristics, quality of the elaborate field modeling and the very good shape of the magnets with proper alignment of the machine.

 

slides icon

Slides

 
TU6PFP007 Compact and Non Expensive Transport Systems for Medical Facilities Using Proton and Ion Beams ion, proton, target, beam-transport 1303
 
  • M.M. Kats
    ITEP, Moscow
 
 

All known ion beam transport systems for medical applications with or without GANTRY are very large, complicated and expensive. Its cost is comparable with accelerator facility itself. It stimulates search of beam transport and distribution systems that allow reducing their cost and sizes considerably keeping treatment efficiency. Two such transport system are considered in the present paper. The first one is based on bend magnets that are rotated around their center of mass with movement of patient in horizontal position around of magnets. The second one uses stationary magnets with movement of patient in horizontal position in vertical plane. It is shown that the proposed ion transport systems provide treatment efficiency comparable with GANTRY at considerably lower sizes, mechanical complexity and cost.

 
WE5RFP079 Field Optimization in Superconducting Undulators undulator, photon, radiation, insertion 2450
 
  • S. Chunjarean
    SLRI, Nakhon Ratchasima
  • C.-S. Hwang, J.C. Jan, F.-Y. Lin, P.H. Lin
    NSRRC, Hsinchu
 
 

Highest photon beam brightnesses are achieved in radiation from undulators. Very short period length and high fields, reached only in superconducting undulators, are desired to produce hard X-rays. In lower energy storage rings this is not enough, but radiation at higher harmonics(7th and up) are desirable. This is possible only if the undulator fields and periods are near perfect. Shimming methods as applied for room temperature permanent magnet undulators cannot be used for such superconducting magnets. The effect of field and period tolerances on higher harmonics photon beam brightnesses will be presented and limiting tolerances will be discussed. A variety of different field optimization techniques together with some measurements on test magnets will be discussed and evaluated to their usefulness as a high photon energy and high brightness radiation source.

 
WE6PFP097 Pulsed Magnet Arc Designs for Recirculating Linac Muon Accelerators linac, quadrupole, dipole, acceleration 2733
 
  • G.M. Wang, K.B. Beard, R.P. Johnson
    Muons, Inc, Batavia
  • S.A. Bogacz
    JLAB, Newport News, Virginia
  • G.M. Wang
    ODU, Norfolk, Virginia
 
 

Funding: Supported in part by USDOE STTR Grant DE-FG02-08ER86351


We have previously considered the application of fast pulsing quadrupoles to increase the focusing of muon beams as they gain energy in the linac region of a recirculating linear accelerator (RLA) in order to allow more passes. In this work we consider the use of pulsed magnets, both quads and dipoles, to reduce the number of beam lines needed for the return arcs of the RLA. We investigate the required relationships between the linac parameters (length and energy gain) and the momentum acceptance of the return arcs and consider the optimum strategy for accelerating both muon charge signs.

 
WE6RFP003 Helium II Calorimetry for the Detection of Abnormal Resistive Zones in LHC Sectors dipole, cryogenics, quadrupole, superconductivity 2784
 
  • L.J. Tavian
    CERN, Geneva
 
 

Following the incident on a LHC sector due to an electrical arc on the main dipole bus-bar circuit, post-mortem analysis of previous current plateaus has shown abnormal temperature drift in the helium II baths of some magnets in the concerned area. In order to identify other possible risky areas, a detection system based on calorimety using available precision cryogenic thermometers has been first validated by applying calibrated heating in the magnet cold-mass and then implemented in the different sectors. On the 3-km long continuous helium II cryostat of each LHC sector, this method allows detecting abnormal dissipations in the W-range , i.e. additional resistive heating due to abnormal resistance of about 20 nΩ at 7 kA and less than 10 nΩ at nominal current. The paper describes the principle and the methodology of this calorimetric method and gives the results obtained on the LHC sectors.

 
WE6RFP004 Dependence of Superconducting Wire Motion on the Base Insulating Material in Magnetic Field solenoid, cryogenics, power-supply 2787
 
  • K. Ruwali
    Sokendai, Ibaraki
  • K. Hosoyama, K. Nakanishi
    KEK, Ibaraki
  • Y. Teramoto, A. Yamanaka
    Toyobo Research Institute, Shiga
 
 

Main cause of premature quench in superconducting magnet is the heat generated due to sudden superconducting wire motion. The wire motion occurs where electromagnetic force to conductors exceeds frictional force on surfaces of the conductors. Hence, frictional properties of the conductors and winding structures are important parameters for characterizing stability of the superconducting windings. Experiments were carried out to detect the superconducting wire motion under the influence of varying electromagnetic force. The wire movement is detected by observing the spike in voltage of the superconducting sample wire. From the time profile of voltage spike, distance moved by superconducting wire is estimated. Insulating material such as Dyneema random sheet, Dyneema non-woven sheet and Dyneema fiber cloth were used at the interface of superconducting wire and base material. Dyneema has low frictional coefficient and negative thermal expansion. The experimental findings will be discussed.

 
TH5RFP095 Fiber Bragg Optical Sensors for YBCO Applications optics, feedback, vacuum, superconductivity 3675
 
  • F. Hunte, J. Schwartz, H. Song
    NHMFL, Tallahassee, Florida
  • R.P. Johnson, M. Turenne
    Muons, Inc, Batavia
 
 

Magnetic confinement fusion reactors (tokamaks) require the development of magnets capable of generating large fields under stringent structural constraints. High temperature superconducting magnets which are well suited to this application are however vulnerable to quench occurrence during operation. Temperature and strain sensors based on fiber optics are being developed as a countermeasure to this contingency. Optical fibers with Bragg gratings are amenable to embedding within superconducting magnets to monitor temperature, strain, irradiation, and to detect quench occurrence. In a length of YBCO tape where quench propagation velocities are slow, we show that it is possible to detect the event occurrence using fiber optic sensors even with a sampling rate as low as 1 Hz. This preliminary result demonstrates the feasibility of using fiber optic sensors to monitor the temperature and strain condition along the length within a coil. These sensors could be used to provide feedback to or trigger magnet protection systems. This would be an invaluable method for mitigating damage to superconducting magnets and increasing up-time for reactors.