Paper | Title | Page |
---|---|---|
TUPE091 | Recent Progress in the Energy Recovery Linac Project in Japan | 2338 |
|
||
Future synchrotron light source using a 5-GeV-class energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting active R&D efforts for that. We are developing super-brilliant DC photocathode guns, two types of cryomodules for both injector and main superconducting linacs, 1.3 GHz high CW-power rf sources, and other important components. We are also constructing a compact ERL for demonstrating the recirculation of low-emittance, high-current beams using those key components. We present our recent progress in this project. |
||
WEPD081 | Long-pulse Modulator Development for the Superconducting RF Test Facility (STF) at KEK | 3290 |
|
||
This paper describes a long-pulse 1.3 GHz klystron modulator that was recently developed for the Superconducting RF Test Facility (STF) at High Energy Accelerator Research Organization (KEK). The modulators is a direct-switched-type design with a 1:15 step-up transformer and a bouncer circuit to compensate for the output pulse droop within ±0.5%; it can drive a klystron with up to 10 MW peak power, 1.5 ms rf pulse width, and up to 5 pps repetition rate. The main features of this modulator are the use of four 50 kW switching power supplies in parallel to charge the storage capacitors to 10 kV, self-healing-type capacitor to realize a compact storage capacitor bank, and a highly reliable IGBT switch which enables elimination of a crowbar circuit. Design considerations and its performance are presented. An IEGT (Injection Enhanced Gate Transistor) switch, composed of six series devices with a rating of 4.5 kV and 2100 A-DC, has been also developed and tested for R&D to realize a compact modulator. |
||
THPEA012 | Various Observables of TW Accelerator Structures Operating 100MV/m or Higher at X-band Facility, Nextef of KEK | 3699 |
|
||
Under the CERN-SLAC-KEK collaboration, we have been developing the high gradient TW accelerator structures. One of the main focuses is the feasibility study of CLIC accelerator structure at X-band. A high power facility, Nextef*, was established at KEK in 2007. A few structures have been tested, including an un-damped disk-loaded structure successfully tested beyond 100 MV/m, a heavily damped structure to be tested from late 2009 and a structure made in a quadrant configuration. These structures follow the same accelerating-mode RF parameter profile, called CLIC-C**, but show different features at high gradient operation. Various observables, such as dark current, vacuum activities, light emission, breakdown rate, and so on, are measured. We discuss the high gradient phenomena related to these observables and the possible improvement for stable operation at a higher gradient. * T. Higo et al., THP038, LINAC06,2006. |
||
THPEA015 | L-band Accelerator System in Injector Linac for SuperKEKB | 3708 |
|
||
In order to improve the capture efficiency of the positron produced at the target in present KEKB Injector linac, a new project has just started to utilize L-band (1298MHz) RF. The present S-band (2856MHz) capture cavities and successive three RF units are to be replaced by those of L-band. The specifications of the L-Band system should fulfill the demands of a positron damping ring downstream which is also to be under study for super KEKB project. Besides the whole design work of the system, our present ongoing work is rather concentrated on establishing L-Band RF source and accelerating structures. |
||
THPEB046 | RF Source of Compact ERL in KEK | 3981 |
|
||
ERL (Energy Recovery Linac) of 5GeV energy is a future plan in KEK and in order to study the technical feasibility, construction of a compact ERL machine (cERL) is considered. Beam energy and current of cERL are 245MeV and 100mA, respectively. As 1.3 GHz frequency and super conducting cavity are chosen for the RF system, similar technology with KEK STF is employed. From 2008, KEK started the preparation of cERL and one RF unit of injector linac is introduced in this fiscal 2009. A new cw klystron of 300kW out put power, 150kW Y-type circulator and high power water load were developed in FY2009. DC power supply was under manufacturing. Preliminary test of HLRF and the high power couplers are scheduled in the Photon Factory site by making use of the old DC power supply. For main accelerator, we also introduced a 30kW IOT and a 35kW klystron and a DC power supply. At the same time, cERL is determined to be constructed in the East Counter Hall in KEK and the design layout is preceded. In this paper, the recent RF source development of cERL is described. Layout of the east counter hall, where cERL is constructed, is progressed and shown in this report. |
||
THPD007 | The Linac Upgrade Plan for SuperKEKB | 4290 |
|
||
The next generation B-factory 'SuperKEKB' project whose target luminosity is 8 ×1035 cm-2s-1 is under consideration. A 'nano-beam scheme' is introduced to the SuperKEKB. In the scheme, an electron beam (Energy = 7 GeV, Charge = 3-4 nC/bunch, Vertical emittance =2.8 x 10-5 m) and a positron beam (Energy = 4 GeV, Charge = 4 nC/bunch, Vertical emittance = 1.6 x 10-5 m), are required at the end of injector linac. They are quite challenging targets for the present linac. In order to meet the requirements, we will introduce some new components to the linac. They are a photo-cathode RF gun for an electron beam, a positron capture section using new L-band cavities, a newly designed positron-generation target system and a damping ring for a positron beam. This presentation shows a strategy of our injector upgrade. |