Paper | Title | Page |
---|---|---|
TUPPC060 | Implementation of Continuous Scans Used in Beamline Experiments at Alba Synchrotron | 710 |
|
||
The Alba control system * is based on Sardana **, a software package implemented in Python, built on top of Tango *** and oriented to beamline and accelerator control and data acquisition. Sardana provides an advanced scan framework, which is commonly used in all the beamlines of Alba as well as other institutes. This framework provides standard macros and comprises various scanning modes: step, hybrid and software-continuous, however no hardware-continuous. The continuous scans speed up the data acquisition, making it a great asset for most experiments and due to time constraints, mandatory for a few of them. A continuous scan has been developed and installed in three beamlines where it reduced the time overheads of the step scans. Furthermore it could be easily adapted to any other experiment and will be used as a base for extending Sardana scan framework with the generic continuous scan capabilities. This article describes requirements, plan and implementation of the project as well as its results and possible improvements.
*"The design of the Alba Control System. […]" D. Fernández et al, ICALEPCS2011 **"Sardana, The Software for Building SCADAS […]" T.M. Coutinho et al, ICALEPCS2011 ***www.tango-controls.org |
||
![]() |
Poster TUPPC060 [13.352 MB] | |
TUPPC061 | BL13-XALOC, MX experiments at Alba: Current Status and Ongoing Improvements | 714 |
|
||
BL13-XALOC is the only Macromolecular Crystallography (MX) beamline at the 3-GeV ALBA synchrotron. The control system is based on Tango * and Sardana **, which provides a powerful python-based environment for building and executing user-defined macros, a comprehensive access to the hardware, a standard Command Line Interface based on ipython, and a generic and customizable Graphical User Interface based on Taurus ***. Currently, the MX experiments are performed through panels that provide control to different beamline instrumentation. Users are able to collect diffraction data and solve crystal structures, and now it is time to improve the control system by combining the feedback from the users with the development of the second stage features: group all the interfaces (i.e. sample viewing system, automatic sample changer, fluorescence scans, and data collections) in a high-level application and implement new functionalities in order to provide a higher throughput experiment, with data collection strategies, automated data collections, and workflows. This article describes the current architecture of the XALOC control system, and the plan to implement the future improvements.
* http://www.tango-controls.org/ ** http://www.sardana-controls.org/ *** http://www.tango-controls.org/static/taurus/ |
||
![]() |
Poster TUPPC061 [2.936 MB] | |
TUCOCB10 | TANGO V8 - Another Turbo Charged Major Release | 978 |
|
||
The TANGO (http://tango-controls/org) collaboration continues to evolve and improve the TANGO kernel. A latest release has made major improvements to the protocol and, the language support in Java. The replacement of the CORBA Notificaton service with ZMQ for sending events has allowed a much higher performance, a simplification of the architecture and support for multicasting to be achieved. A rewrite of the Java device server binding using the latest features of the Java language has made the code much more compact and modern. Guidelines for writing device servers have been produced so they can be more easily shared. The test suite for testing the TANGO kernel has been re-written and the code coverage drastically improved. TANGO has been ported to new embedded platforms running Linux and mobile platforms running Android and iOS. Packaging for Debian and bindings to commercial tools have been updated and a new one (Panorama) added. The graphical layers have been extended. The latest figures on TANGO performance will be presented. Finally the paper will present the roadmap for the next major release. | ||
![]() |
Slides TUCOCB10 [1.469 MB] | |
WECOAAB03 | Synchronization of Motion and Detectors and Continuous Scans as the Standard Data Acquisition Technique | 992 |
|
||
This paper describes the model, objectives and implementation of a generic data acquisition structure for an experimental station, which integrates the hardware and software synchronization of motors, detectors, shutters and in general any experimental channel or events related with the experiment. The implementation involves the management of hardware triggers, which can be derived from time, position of encoders or even events from the particle accelerator, combined with timestamps for guaranteeing the correct integration of software triggered or slow channels. The infrastructure requires a complex management of buffers of different sources, centralized and distributed, including interpolation procedures. ALBA uses Sardana built on TANGO as the generic control system, which provides the abstraction and communication with the hardware, and a complete macro edition and execution environment. | ||
![]() |
Slides WECOAAB03 [2.432 MB] | |