
TANGO V8 - ANOTHER TURBO CHARGED MAJOR RELEASE

Andrew Götz, Jean-Michel Chaize, Tiago Coutinho, Jens Meyer, Faranguiss Poncet, Emmanuel
Taurel, Pascal Verdier,ESRF, Grenoble, France

Stephane Perez, CEA, Arpajon, France
David Fernandez-Carreiras, Sergi Rubio-Manrique, CELLS-ALBA, Barcelona, Spain
 Stefano Cleva, Marco Lonza, Lorenzo Pivetta, Claudio Scafuri, Elettra, Trieste, Italy

E Igor Alexandrovich Khokhriakov, HZG, Geesthacht, Germany
 Darren Paul Spruce, MAX-lab, Lund, Sweden

Gwenaelle Abeille, Alain Buteau, Nicolas Leclercq, Frédéric Picca, SOLEIL, Paris, France

Abstract
The TANGO collaboration continues to evolve and

improve the TANGO kernel. A latest release has made
major improvements to the protocol and, the language
support in Java. The replacement of the CORBA
Notification service with ZMQ for sending events has
allowed a much higher performance, a simplification of
the architecture and support for multicasting to be
achieved. A rewrite of the Java device server binding
using the latest features of the Java language has made the
code much more compact and modern. Guidelines for
writing device servers have been produced so they can be
more easily shared. The test suite for testing the TANGO
kernel has been re-written and the code coverage
drastically improved. TANGO has been ported to new
embedded platforms running Linux and mobile platforms
running Android and iOS. Packaging for Debian and
bindings to commercial tools have been updated and a
new one (Panorama) added. The graphical layers have
been extended. The latest figures on TANGO
performance will be presented. Finally the paper will
present the roadmap for the next major release.

WHAT IS TANGO?
Tango [1] is a control system tool kit developed by a

community of institutes. It is object oriented with the
notion of devices (objects) for each piece of hardware or
software to be controlled. Tango classes are merged
within operating system processes called Device Servers.
Three types of communication between clients and
servers are supported (synchronous, asynchronous and
event driven).

But Tango is not only the software bus which handles
the communication between device servers and clients.
The Tango tool chain offers software from the hardware
interface to the graphical user interface for several
programming languages.

Tango utilities are available, with the basic installation,
for code generation, device configuration and testing and
for administration and survey of a whole Tango control
system.

An archiving and a configuration snapshot system
usable with Oracle or MySQL are also available.

Table 1 : Available Tango Modules

Module Description

Core Libraries Client/Server communication libraries
for C++, Python and Java

Device Classes More than 300 hardware interface
classes are available to download [2]

GUI Frameworks Available for C++ and Python using
QT, for Java using Swing and a web
interface written in PHP

Client Bindings LabView, Matlab, IgorPro and
Panorama

Tools Pogo – Code generator for device
classes in C++, Python and Java

Jive – Configuration and testing tool

Astor – Administration and survey of
the Control system

Archiving Archiving and snapshot system with
GUIs and web interface. Usable with
Oracle and MySQL

Alarm System Event driven alarm service

Sardana Framework for experiment control :
Interface standardization, configuration,
sequencing, command line interface

Tango development started in 1999 at the ESRF and

has made again, with today’s release version 8, some
major improvements compared to the last versions.

EVENT SYSTEM
The new high performance event system based on

ZMQ (version 3.2.3) [3], which was already presented as
a development study at the ICALECS 2011 [4], is now
available with the release of Tango version 8. It replaces
the former event system which was based on an
implementation of the CORBA notification service.

The measured performance for event distribution was
increased by a factor of 40 for events transferring small
amounts of data and by a factor of 10 for events
containing big data junks (>100Kbyte).

TUCOCB10 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

978C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

	 Event rate Latency

1 double = 64bits	 95KHz	 300us
1 KByte	 82KHz	 250us
1	MByte	 1Khz	 2ms	

Figure 1: Event system performance.

The implementation uses the publish-subscribe pattern
of the ZMQ library. The default event propagation is still
the standard unicast mode. Event multicasting is possible,
but needs to be configured for a set of events due to the
more complex network configuration. For multicasting
the Pragmatic General Multicast (PGM) protocol of the
ZMQ library is used.

The new event system is available for servers and
clients written in C++, Python and Java. The Java
implementation is based on Jzmq (2.1.2) which is a JNI
layer above the C++ ZMQ library. It also works with the
pure Java implementation jeromq.

A major effort was done to allow easy integration of
the new event system into a running control system.
Compatibility was pushed that today event propagation is
possible using both event systems in parallel. Servers are
able to propagate events on both channels. ZMQ is used
with Tango 8 clients and the notification service for old
clients. Clients linked with Tango 8 are also able to
receive on both channels. The switching is handled in the
Tango API library and is completely transparent for the
device server and the application programmer. Like this,
just by re-compiling parts of the control system the event
propagation will change from the old to the new system.

JAVA SERVERS
The Tango Java API is developed using the Jacorb

framework [5] that is a Java CORBA implementation.
Jacorb is stable and continuously maintained (last
released in December 2012). The Java Client API is
extensively used in the Tango community and up-to-date
with the latest Tango features.

On the other hand, the Java server API development
was on hold for several years, and lacked some major
C++ API features. Meanwhile, the Java language had also
released two new versions.

The Java Server API refactoring was performed in
2011 by Soleil.

The first goal was to implement all the “already
existing in C++ features” of Tango. Here are the major
improvements:
 Attributes State and Status: were only defined as

Commands in the old API.
 Write Spectrum and Image attributes: only scalar

attributes were writable.
 Dynamic Commands and Attributes: this feature

was already possible in the old API but was very
complicated and done with an additional API.

 Black box: detailed histories of any client request:
this feature was incomplete.

To validate the Java API equivalence with the C++, the
C++ tests suite was executed on a Java test server.

The second goal on this upgrade was to take advantages
of the latest Java add-ons. A main novelty of Java 5 was
the ‘annotation’ [6] that allows adding metadata to a Java
source code. This feature is right now a key driver when it
comes to create a Tango device. Here is a sample code
that creates a server ‘TestDevice’ with a read/write
attribute called ‘myAttribute’:
 The ‘@Device’ annotation defines the class

‘TestDevice’ as a Tango device
 And the ‘@Attribute’ annotation defines the class

field ‘myAttribute’ as a Tango Attribute.

@Device
public class TestDevice {

 @Attribute
 public double myAttribute;

 public double getMyAttribute() {
 return myAttribute;
 }

 public void setMyAttribute(double myAttribute) {
 this.myAttribute = myAttribute;
 }
}

Previously, a device developer needed to have a strong
knowledge of inherited methods and attributes and an
overall understanding of the entire API. With these
features of the current release, the code is clearly focused
and simplified.

The API is one year old now, and is intensively used in
production at Soleil. Most of the Java servers used at
Soleil respond to a high-performance requirement since
there are collecting data on thousands of other Tango
devices and are also polled by many client applications.

The Java server API is fully documented [7] and
referenced in the tango web site.

MISCELLANEOUS

Pogo
Major work was done to re-structure and improve the

templates for the Tango code generator Pogo. The
templates for Python servers have been re-structured and
the templates for the Java servers completely re-written
according to the new Java server API.
The code generation was ported from the Eclipse Xpand
to the Xtend [8] package. Much easier modelling in a Java
like environment is now possible.

The handling of dynamic attributes was added to the
code generation templates.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB10

Software Technology Evolution

ISBN 978-3-95450-139-7

979 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 2: The Tango code generator Pogo.

Database API
The interface to the Tango configuration database was

extended to allow applications to work in an environment
with multiple Tango control systems. It is now possible to
clone or move device server configuration dynamically,
from a GUI interface, from one control system to another
one. This is extremely useful at a light source where
equipment is often moved from one beamline to another
one.

Panorama
On top of the LabView, Matlab and Igor Pro bindings,

a new Tango binding for the industrial SCADA system
Panorama [9] is now available for download.

Tango and Industries
Not only the Tango collaboration is growing but also

the interest of industrial companies in Tango is
increasing. After the delegation of Tango training courses
to one of our industrial partners we are in the process of
creating a legal representative for Tango as central
contact for industrial partners and new industrial users.
See the paper MOPPC078 [10] for a more detailed
description of the on-going efforts.

QUALITY AND DOCUMENTATION
To insure the good quality of the growing Tango code

base, the test suite was re-furbished using a customized
version of the Cxxtest [11] unit testing library. It was also
completed to achieve code coverage of 60%. Using
Jenkins [12] as continuous integration tool for
compilation and testing allows quick detection of
introduced problems.

Figure 3: Continuous integration and testing.

On top of good code quality new users must be
introduced in a comprehensive way to the Tango control
system philosophy. Soleil has written the device server
design and implementation guidelines. The document
explains clearly how a device server should be designed
and programmed. More documents like this are planned
to complete the technical documentation.

MOBILE AND EMBEDDED PLATFORMS

Tango on Mobile Devices
Tango offers several ways to interact with mobile

devices. The first solution uses the Cordova (PhoneGap)
[13] framework and jQuery mobile to allow the writing of
java script applications which connect to Tango device
servers via proxy servlets on a TomCat server.

Figure 4: Cordova framework.

The second solution is a browser based web solution,
which uses the web interface of the Taurus GUI
framework [14] from Tango. It allows writing java script
applications which communicate via web sockets with a
Tornado web server.

Figure 5: Taurus web integration.

Inside the web server the Taurus web module takes care
of translating Tango data into events on the web socket.
Dependent on the underlying Tango server Taurus will
switch automatically from polling to an event based
communication schema to refresh data on the web page.

Figure 6: Browser based web solution.

For applications on the local network a third solution is
available. The Tango java client API was ported to
Android and can be used in applications accessing
directly the Tango control system.

TUCOCB10 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

980C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

Embedding Tango
TANGO is well suited to be put on embedded systems

to add intelligence to devices and to reduce the number of
protocols to manage in a distributed system. The latest
hardware platforms supported are the Rasberry Pi [15]
and the Beagle Bone [16]. Both are low cost fully fledged
ARM based computers running Linux.

The Rasberry Pi platform is a very low cost and ideal
for learning about Tango and doing demonstrations.

Figure 7: Rasberry Pi.

The Beagle Bone is ideal for embedding Tango in
production serious projects. Development projects are on-
going at ELETTRA and ESRF.

Figure 8: Beagle Bone development at ELETTRA.

TANGO V9 ROADMAP
Since Tango version 8 is released, work has already

started on the features for Tango version 9. The main
improvements will be

Pipes
Pipes are a third communication type between clients

and servers on top of commands and attributes. Via a data
pipe data blobs can be transferred. A data blob is variable
set of data composed out of basic data types like a C-
structure. The data blob is self-describing and the
composition of the data blob might change with every
data transfer.

Every data pipe will have a name like a command or an
attribute and ways to retrieve the composition of the sent
data blobs.

The main usages for data pipes will be the transfer of
synchronized sets of data, like for example the result of
scan.

Forwarded Attributes
Another key feature for the version 9 will be attribute

forwarding. The same attribute, or data value, might be
used by several Tango classes. Instead of re-
implementing the attribute in a second class we want to
instantiate automatically an attribute with the same
interface which forwards all its read and write requests as
well as configuration changes to the source attribute.

No manual coding is required, because the code
generator Pogo can produce the necessary code when
designing the interface of a Tango class.

CORBA and ZMQ
Tango uses both protocols today for the data transport

on the network. ZMQ is used for event driven
communication and CORBA for all synchronous and
asynchronous requests. This proves that Tango has
encapsulated the network protocol properly and allows its
replacement.

For Tango 9 investigations will be carried out how to
replace the aging CORBA protocol. ZMQ might be a
replacement candidate, but does not bring all the needed
features. See the paper TUCOCB07 [17] for more
detailed information.

REFERENCES
[1] http://www.tango-controls.org
[2] http://www.tango-controls.org/device-servers
[3] http://www.zeromq.org/
[4] E.Taurel et al., “Tango Collaboration and Kernel Status”
 ICALEPCS’2011, Grenoble, France, October 2011.
[5] http://www.jacorb.org/
[6] http://en.wikipedia.org/wiki/Java_annotation
[7] http://tangocs.svn.sourceforge.net/viewvc/tangocs/
 api/java/server/JTangoServer/trunk/doc//download
[8] http://www.eclipse.org/xtend/
[9] http://uk.codra.net/panorama/
[10] Andrew Götz, Jean-Michel Chaize, Alexandre Delorme,
 “TANGO Steps Toward Industry,” MOPPC078,
 ICALEPCS 2013, to be published.
[11] http://cxxtest.com/
[12] http://jenkins-ci.org/
[13] http://cordova.apache.org/
[14] http://www.tango-controls.org/static/taurus/v300/
 doc/html/users/ui/taurusgui.html
[15] http://www.raspberrypi.org/
[16] http://beagleboard.org/Products/BeagleBone
[17] Andrew Götz, Emmanuel Taurel, Pascal Verdier,
 “Can ØMQ Replace CORBA,”TUCOCB07,
 ICALEPCS 2013, to be published.

Proceedings of ICALEPCS2013, San Francisco, CA, USA TUCOCB10

Software Technology Evolution

ISBN 978-3-95450-139-7

981 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

