Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPC02 | Status of Beam Diagnostics for NSLS-II Booster | booster, controls, BPM, diagnostics | 41 |
|
|||
For the NSLS II third generation light source, a full-energy Booster ring has been designed and produced by Budker Institute of Nuclear Physics. For the Booster commissioning and operation, following beam diagnostic instruments have been designed and manufactured: 6 beam flags, 36 electrostatic pickups with BPM receivers, 2 synchrotron light monitors (SLMs), 1 DC current transformer, 1 fast current transformer, Tune Measurement System (TMS) including 2 strip-line assemblies. All the equipment has been installed in the Booster ring and Injector Service Area. Control software of the beam diagnostic devices has been developed and incorporated into the NSLS-II control system using the EPICS environment. A number of high-level applications has been developed using Control System Studio and Python. The Integrated Testing and the System Level Testing have been performed. Current status of the Booster beam diagnostic instrumentation is reviewed. | |||
MOPF01 | Transverse Beam Size Measurements Using Interferometry at ALBA | transverse, synchrotron, dipole, radiation | 193 |
|
|||
Double-slit interferometry using visible light has been used for measuring the transverse beam size in different accelerators. The beam size is inferred from the analysis of the spatial coherence of the synchrotron light produced by a bending magnet. At ALBA, this technique has been implemented with moderate success, mainly limited by the present imperfections in the in-vacuum mirror that is used to extract the light out of the vacuum chamber. In this paper, we report the results obtained with the current set-up, and discuss possible improvements. | |||
MOPF05 | Operating Semiconductor Timepix Detector with Optical Readout in an Extremely Hostile Environment of Laser Plasma Acceleration Experiment | laser, target, shielding, optics | 208 |
|
|||
The laser plasma acceleration (LPA) experiments produce very intensive electromagnetic pulses (EMP) complicating operation of sensitive electronic detectors. We present our experience with new optical readout and EMP shielding for hybrid silicon pixel detector Timepix*, which enabled its operation in an extremely hostile electromagnetic LPA environment. The Timepix detector provides a matrix of 256x256 spectroscopic channels with 55 μm pitch. An optical readout, battery powering and shielding against electromagnetic pulses (EMP) have been developed as part of the ELI Beamlines/IEAP project for the detector Timepix and it significantly improved its resistance to EMP with respect to previous setup using metallic cables for both data acquisition and powering. The new optical setup was successfully tested under vacuum at Prague Asterix Laser System (PALS) during experiments with laser pulses of energies up to 700 J and duration of 350 ps bombarding thin foil solid target. Electromagnetic field was measured both outside the vacuum chamber and inside. The recorded spectrometric data were analyzed and interpreted in a context of an independent experimental campaign run in parallel.
* X. Llopart et al.: Timepix, a 65k Programmable Pixel Readout Chip for Arrival Time, Energy and/or Photon Counting Measurements, Nucl. Instr. and Meth. in Phys. Res. A. Vol. 581 (2007), p485 |
|||
MOPF24 | Magnetic Materials for Current Transformers | CERN, impedance, damping, GSI | 263 |
|
|||
At CERN, the circulating beam current measurement is provided by two types of transformers, the Direct Current Current Transformers (DCCT) and the Fast Beam Current Transformers (FBCT). Each type of transformer requires different magnetic characteristics regarding parameters such as permeability, coercivity and shape of the magnetization curve. Each transformer is built based on toroidal cores of a magnetic material which gives these characteristics. For example, DCCTs consist of three cores, two for the measurement of the DC component and one for the AC component. In order to study the effect of changes in these parameters on the current transformers, several interesting raw materials based on their as-cast properties were selected with the annealing process used to tune their properties for the individual needs of each transformer. First annealing tests show that the magnetization curve, and therefore the permeability, of the material can be modified, opening the possibility for building and studying a variety of transformer cores. | |||
![]() |
Poster MOPF24 [1.185 MB] | ||
MOPF27 | A Beam Current Monitor for the VECC Accelerator | linac, gun, diagnostics, radiation | 275 |
|
|||
TRIUMF is building VECC, the first stage of a 50 MeV electron linac. Beam diagnostic devices will be inserted radially into 8-port vacuum boxes. RF shields, 6.3 cm dia. tubes perforated by pump out slots, can be inserted to reduce wakefields. They will also serve as capacitive probes picking up harmonics of the 650 MHz bunch rate. 100 mV P/P was measured for 3 mA at 100 kV. A SC cavity will accelerate the beam to 10 MeV. The dump current is limited by the shielding to 300 W. We will use a 3 mA beam at 1% duty cycle. Two RF shields will monitor the current. A newly developed circuit will give dc outputs proportional to the peak and average current. It uses a log detector with range of 70 dB for 1 dB of error and a rise and fall time of ~20 ns. Terasic development boards process the log signal. It is digitized by a 14-bit ADC at a 50 MHz rate and passed to a FPGA programmed in Verilog. Altera Megafunctions offset, scale, convert to floating point, antilog and filter the signal in a pipeline architecture. Two 14-bit DACs provide the outputs. Digital processing maintains the wide dynamic range. Beam pulses can be <250 ns and the sample rate insures accuracy at low duty cycle. | |||
![]() |
Poster MOPF27 [1.314 MB] | ||
MOPF29 | A Non-Invasive Beam Monitor for Hadron Therapy Beams | proton, CERN, target, LHC | 283 |
|
|||
Funding: Work supported by the EU under contract PITN-GA-2008-215080 and the STFC Cockcroft Institute Core Grant No. ST/G008248/1 Hadron therapy allows for precise dose delivery to the tumour volume only and hence decreases the dose delivered to the nearby organs and healthy tissue. Ideally, the beam would be monitored whilst being delivered to the patient. A novel, real–time and non-interceptive beam monitor for hadron therapy beams has been developed in the QUASAR Group. It is based on the LHCb VErtex LOcator (VELO) detector and couples to the treatment beam’s transverse halo to determine the intensity, position and ultimately the dose of the treatment beam. This contribution presents the design of a stand-alone version of the VELO detector which was developed for the Clatterbridge Cancer Centre (CCC) treatment line. The mechanical and electronic design of the monitor and its data acquisition system are shown, with a focus on the detector positioning and cooling system. Monte Carlo simulations into expected signal distributions are compared against first measurements with the 60 MeV proton beam at CCC. |
|||
MOPF31 | Design and Performance of the Biased Drift Tube System in the BNL Electron Lens | RHIC, electron, beam-losses, ion | 291 |
|
|||
Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy. The installation of the Electron Lenses in RHIC will be completed this year. Its design includes a series of drift tubes through which the electron beam copropagates, with the RHIC proton beams. These drift tubes are used to create an electric field gradient to sweep out ions that become trapped within the central magnetic field where the electron beam interacts with the proton beams. These isolated drift tubes are biased by high voltage power supplies. Without a path for the proton beam image currents, high voltages will develop on the drift tubes that can be detrimental to the electron beam and increase the RHIC machine impedance. This paper presents the design of the drift tubes, axial electric field gradient, and the custom high voltage RF bias tees that were designed to provide separate paths for the high frequency image currents and the DC high voltage bias over the same cables. The design and simulation of the bias tee is discussed, as well as RF signals from the proton beam current imaged on the drift tubes, as measured through the bias tees during the commissioning of the blue RHIC beam electron lens this past spring. |
|||
![]() |
Poster MOPF31 [31.237 MB] | ||
MOPF34 | Nuclotron Deuterons Beam Parameters Measurements Using SSNTD | target, dipole, quadrupole, synchrotron | 299 |
|
|||
ADS are considered as prospective nuclear installations for energy production and nuclear waste transmutation or recycling. The international project “Energy and Transmutation Radioactive Wastes” running in the Laboratory of High Energy Physics at JINR (Dubna, Russia) at the accelerator complex “Nuclotron” is aimed at a feasibility study of using a deeply subcritical natural or depleted uranium or thorium active core with very hard neutron spectrum inside for effective burning of the core material together with spent nuclear fuel. For any ADS experiment a necessary and a key element is beam diagnostics. In this paper a technique for precise measurement of deuteron beam parameters using SSNTD, developed within the bounds of “E&T RAW” project, is presented. The deuteron beam parameters, specifically beam shape, size and position on a target, are obtained from track density distribution on the irradiated track detectors. The presented technique has a resolution of 1 mm. The experimental results of beam parameter measurements for deuterons with energies of 2, 4 and 8 GeV at the irradiation of the uranium subcritical assembly “QUINTA”, obtained with the SSNTD technique, are presented. | |||
![]() |
Poster MOPF34 [0.826 MB] | ||
TUPC07 | Design and Impedance Optimization of the SIRIUS BPM Button | BPM, impedance, storage-ring, longitudinal | 365 |
|
|||
Design of several BPM Buttons is presented with detail impedance, heat transfer and mechanical analysis. Special attention is given to the application of ceramics as materials with low relative permittivity inside of the BPM Button and to the geometric shape of the BPM Button. The heat dissipation is evaluated based on the loss factor calculated for a 2.65mm bunch length. The narrow-band impedance is discussed and its dependence on applied ceramic materials is compared. | |||
![]() |
Poster TUPC07 [1.715 MB] | ||
TUPC11 | Beam-Based Measurement of ID Taper Impedance at Diamond | impedance, transverse, simulation, BPM | 380 |
|
|||
New insertion devices (IDs) are being designed now for a Diamond upgrade. One of the important topics of the design is the coupling impedance of the ID vacuum chamber movable tapers. To get a complete and reliable information of the impedance, analytical estimations, numerical simulation and beam-based measurement have been performed. The impedance of an existing ID taper geometrically similar to the new one has been measured using the orbit bump method. It turns out that in spite of the small magnitude (a few um) of orbit distortion to be observed in this case, the BPM resolution is sufficient for this measurement. The measurement results in comparison with simulation data are discussed in this paper. | |||
TUPC37 | Presentation of the Smith-Purcell Experiment at SOLEIL | radiation, SOLEIL, linac, longitudinal | 460 |
|
|||
Funding: Work supported by seed funding from Université Paris-Sud, program 'Attractivité' and by the French ANR under contract ANR-12-JS05-0003-01. The potential of Coherent Smith-Purcell radiation as a longitudinal bunch profile monitor has already been demonstrated and has recently been extended to the sub-picosecond range. As a critical step toward the construction of a single shot bunch profile monitor using Coherent Smith-Purcell radiation it is important to measure very accurately the distribution of such radiation. Optimum background suppression techniques need to be found and relatively cheap detectors suitable for the far infra-red need to be qualified. To perform these tasks a test stand has been installed at the end of the linac of the synchrotron SOLEIL. This test stand and the first results from its commissioning will be presented here. |
|||
TUPF25 | Beam Current Measurement System in CSNS LINAC | linac, beam-transport, SNR, instrumentation | 565 |
|
|||
The China Spallation Neutron Source is being constructed at Dongguan, Guangdogn province. Before RCS Ring there are three beam transport sections in CSNS LINAC : LEBT, MEBT, LRBT, where various beam measurement monitors will be installed. Beam Current Transformers (BCTs) have been designed to measure beam macro-pulse current that will operate between 5mA to 80mA . The BCTs have the same inductance but different size in these three sections. Besides, beam parameters should be monitored also between the DTL four parts. There is no BCT but a FCT would be installed after DTL1 due to space limit. So this FCT is planned to measure the macro-pulse current, and we have to proceed the acquired data to show the original macro-pulse waveform due to the FCT’s low inductance. | |||
![]() |
Poster TUPF25 [0.736 MB] | ||
TUPF36 | Analysis of Modulation Signals Generated in the TE Wave Detection Method For Electron Cloud Measurements | electron, resonance, BPM, pick-up | 605 |
|
|||
Funding: Work supported by the U.S. Department of Energy and by the US National Science Foundation under Contracts No. DE-AC02-05CH11231, DE-FC02-08ER41538, DE-SC0006505, PHY-0734867, PHY-1002467. The evaluation of the electron cloud density in storage rings by measuring its effects on the transmission of electromagnetic signals across portions of the beampipe is a widely used technique and the most suited for measurements over extended regions. Recent results show that in a majority of cases the RF signal transmission takes place by coupling to standing waves excited in the vacuum chamber. In such a case the effect of a varying cloud density is a simultaneous amplitude, phase and frequency modulation of a fixed frequency drive signal. The characteristics of the modulation depend not only on the cloud density values and spatial distribution, but also on its temporal evolution and on the damping time of the standing waves. In this paper we evaluate the relationship between measured modulation sidebands amplitude and the electron cloud density when cloud and electromagnetic resonance rise and fall times are of the same order of magnitude, as it is the case in the accelerators where we have conducted our experiments. |
|||
WEAL2 | Extremely Low Emittance Beam Size Diagnostics with Sub-Micrometer Resolution Using Optical Transition Radiation | OTR, laser, electron, transverse | 615 |
|
|||
Transverse electron beam diagnostics is crucial for stable and reliable operation of the future electron-positron linear colliders such as CLIC or Higgs Factory. The-state-of-the-art in transverse beam diagnostics is based on the laser-wire technology. However, it requires a high power laser significantly increases the cost of the laser-wire system. Therefore, a simpler and relatively inexpensive method is required. A beam profile monitor based on Optical Transition Radiation (OTR) is very promising. The resolution of conventional OTR monitor is defined by a root-mean-square of the so-called Point Spread Function (PSF). In optical wavelength range the resolution is diffraction limited down to a few micrometers. However, in * we demonstrated that the OTR PSF has a structure which visibility can be used to monitor vertical beam size with sub-micrometer resolution. In this report we shall represent the recent experimental results of a micron-scale beam size measurement. We shall describe the entire method including calibration procedure, new analysis, and calculation of uncertainties. We shall discuss the hardware status and future plans.
* P. Karataev et al., Physical Review Letters 107, 174801 (2011). |
|||
![]() |
Slides WEAL2 [5.120 MB] | ||
WECL2 | Radiation Damages and Characterization in the SOLEIL Storage Ring | radiation, quadrupole, dipole, SOLEIL | 644 |
|
|||
After six years of operation, equipment located close to some vacuum chambers of the SOLEIL storage ring show unexpected damages due to radiation. It has been pointed out that, inside the so called “quadrupole” vacuum chambers, fluorescence X-rays are emitted by the materials that intercept upstream dipole synchrotron radiation. The energy of the emitted X-ray is too high to be significantly attenuated by the aluminum of which the vacuum chamber is made. Diagnostics and means used to characterize this radiation are presented, and measurements are compared to calculations. | |||
![]() |
Slides WECL2 [2.336 MB] | ||
WEPC03 | Brookhaven 200 MeV Linear Accelerator Beam Instrumentation Upgrade | linac, instrumentation, diagnostics, radiation | 656 |
|
|||
The Brookhaven National Laboratory 200 MeV H− LINAC beam instrumentation equipment has been in operation for four decades with various changes implemented over this period. There is a need to upgrade the entire beam instrumentation system of the LINAC to improve the diagnostics of the beam from the Low Energy Beam Transport Line through the LINAC and into the LINAC Booster Transfer Line and BLIP line. Profile Monitors, Current Monitors, Beam Position Monitors, Loss Radiation Monitors, and Emittance Measurement devices are to be designed and implemented over the next three years. This upgrade will improve the operation reliability, beam quality and beam losses. Additional improvements will be obtained by designing the beam instrumentation system to integrate with other proposed diagnostics and malfunction detection and display upgrades in the LINAC Control Room to improve the overall performance of the LINAC. | |||
![]() |
Poster WEPC03 [18.356 MB] | ||
WEPC09 | Performance of NSLS2 Button BPM | BPM, simulation, storage-ring, booster | 678 |
|
|||
Several types of button BPMs are used in NSLS2 complex. Coaxial vacuum feedthroughs are used to couple the beam induced signal out. The feedthroughs are designed to match the external transmission line and electronics with characteristic impedance of 50 Ohm. Performances of these BPM feedthroughs are presented in this paper. | |||
WEPC26 | Pickup Electrode Electrodynamics Investigation | pick-up, LEFT, transverse, impedance | 742 |
|
|||
Waves induced in a pickup by beam were investigated on a large scale model, using 10ps step in coaxial line as beam, and a differentiating capacitive probe. The probe signal was observed at 20GHz oscilloscope. In each of the front and rear transverse gaps between pickup electrode and wall (button pickup), a shorter-than-gap bunch excites a ‘plain-wave’ packet which length is of the order of gap length over c. Two packets are spaced by electrode length over c. The packets propagate along the electrode to a coaxial connector. At this low impedance common point each of the packets partially reflects back and partially passes into the opposite gap. The voltage appearing on the impedance excites two TEM-wave packets: one propagates backwards, another one propagates forward through connector. The connector output is sum of two such packets spaced the same as two incident packets. The packets propagating backwards reflect from the electrode open end, come back to the summing point and generate output in similar way. The same processes occur in a pickup with single gap electrodes (stripline pickup). This phenomenological picture can be used as a guide in pickup design and simulation. | |||
![]() |
Poster WEPC26 [0.647 MB] | ||
WEPF01 | Alignment of a Nozzle-Skimmer System for a Non Invasive Gas Jet Based Beam Profile Monitor | alignment, laser, electron, ion | 803 |
|
|||
Funding: Work supported by EU under contract 215080, Helmholtz Association and GSI under contract VH-BG-328, STFC under the Cockcroft Institute Core Grant No.ST/G008248/1 and a Liverpool - Riken fellowship. A non-invasive gas jet-based beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This shall allow monitoring ultra-low energy, as well as high energy particle beams in a way that causes least disturbance to both, primary beam and accelerator vacuum. In this setup a nozzle-skimmer system is used to generate a thin supersonic curtain-shaped gas jet. However, very small diameters of both, the gas inlet nozzle and subsequent skimmers, required to shape the jet, have caused problems in monitor operation in the past. Here, an image processing based technique is presented which follows after careful manual initial alignment using a laser beam. An algorithm has been implemented in Labview and offers a semi-automated and straightforward solution for all previously encountered alignment issues. The procedure is presented in detail and experimental results are shown. |
|||
![]() |
Poster WEPF01 [0.863 MB] | ||
WEPF05 | An Electron Beam Detector for the FLASH II Beam Dump | radiation, electron, target, laser | 814 |
|
|||
For the electron absorber at FLASH II a detector is developed to control the position, dimensions and profile of the electron beam. Scintillation light, emitted from a luminescent screen in front of the dump window, is reflected by a mirror, located in 2 m distance from the screen, and passes through a vacuum window. Two different optical systems will be installed redundantly for beam image transfer: a conventional lens-mirror-system and a system using a radiation-hard optical fibre bundle. A CCD camera, located in one and a half meter distance from the beam line, is used for the optical analysis. An experimental setup, where the terms of installation of the components correspond to the FLASH accelerator, has been built up in a lab to coordinate the interaction of the screen with the components of the optical system. It was shown that the resolution of the lens-mirror-system is about one line pair per millimeter. An experiment is set up to test the impact of radiation on the optical qualities of the fibre optic bundle by installing it onto a “radioactive hot spot” at the bunch compressor in the FLASH accelerator. | |||
![]() |
Poster WEPF05 [1.926 MB] | ||
WEPF06 | A Fast Switching Mirror Unit at FLASH | laser, site, DESY, free-electron-laser | 818 |
|
|||
The Free Electron Laser (FLASH) at DESY Hamburg is a linac providing unique experimental opportunities to investigate the atomic structure and the properties of materials, nanoparticles, viruses and cells. At the experimental hall, the incoming FEL beam can be deflected towards five test sites by silicon mirrors mounted into vacuum vessels, of which one is operated in permanent switching mode, allowing the simultaneous use of the light at two different test sites. So far, the entire vacuum vessel with the mirror inside is moved into the beam by a linear motor. This results in high translatory inertia and, to compensate the vessel motion, requires vacuum bellows, which have a limited lifetime especially at higher switching frequencies. Therefore, in the recent design the mirror is shifted by piezo motors operated inside the vessel under ultra-high vacuum conditions. However, temperature measurements revealed that during continuous operation the motor reaches up to 90°C only when exposed to air, necessitating long breaks to allow it to cool. Therefore suitable cooling methods are being investigated to guarantee continuous operation of the motor under ultra-high vacuum conditions. | |||
![]() |
Poster WEPF06 [2.431 MB] | ||
WEPF35 | Current Status of the Schottky Cavity Sensor for the CR at FAIR | coupling, dipole, shielding, simulation | 907 |
|
|||
Funding: This work was supported by the GSI. The author would like to thank the CST AG for providing CST Studio Suite. In this paper the current status of the Schottky Cavity Sensor development for the Collector Ring at FAIR, a dedicated storage ring for secondary particles, rare isotopes, and antiprotons, is presented. Designed for longitudinal and transversal Schottky signals, the Sensor features a pillbox cavity with attached waveguide filters utilizing the Monopole mode at 200 MHz for longitudinal and the Dipole mode at around 330 MHz for transversal Schottky measurements. Separated coupling structures allow for mode-selective coupling to measure the different Schottky planes independently. A ceramic vacuum shielding inside the pillbox is implemented to enable non-hermetic adjustable coupling, tuning devices and waveguide structures. Simulations of the structure with focus on the impact of the coupling structures and the ceramic vacuum shielding on the R-over-Q values and the coupling are presented as well as measurements of a scaled demonstrator including comparisons with the simulations. |
|||