Author: Höfle, W.
Paper Title Page
MOPAB24 Identification of Intra-bunch Transverse Dynamics for Feedback Control Purposes at CERN Super Proton Synchrotron 79
 
  • O. Turgut, J.D. Fox, C.H. Rivetta
    SLAC, Menlo Park, California, USA
  • W. Höfle
    CERN, Geneva, Switzerland
  • S.M. Rock
    Stanford University, Stanford, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515 and the US LHC Accelerator Research Program (LARP).
We present methods for parameter estimation of intra-bunch transverse beam dynamics. The dynamics is represented via reduced order linear models. These models are useful in beam monitoring and in the design of feedback controllers to stabilize intra-bunch transverse instabilities. The effort is motivated by the plans to increase currents in the Super Proton Synchrotron as part of the HL-LHC upgrade where feedback methods could control instabilities and allow greater freedom in machine lattice parameters. Identification algorithms use subspace methods to compute a discrete multi-input multi-output (MIMO) representation of the nonlinear dynamics. We use macro particle simulation data (CMAD and HEADTAIL) and SPS machine measurements as the source of dynamics information for the identification of beam dynamics. Reduced models capture the essential dynamics of the beam motion or instability at a particular operating point, and can then be used analytically to design optimal feedback controllers. The robustness of the model parameters against noise and external excitation signals is studied, as is the effect of the MIMO model order on the accuracy of the identification algorithms.
 
 
TUO1AB02 Upgrades of the RF Systems in the LHC Injector Complex 165
 
  • H. Damerau, M.E. Angoletta, T. Argyropoulos, P. Baudrenghien, A. Blas, T. Bohl, A.C. Butterworth, A. Findlay, R. Garoby, S.S. Gilardoni, S. Hancock, W. Höfle, J.C. Molendijk, E. Montesinos, M.M. Paoluzzi, D. Perrelet, C. Rossi, E.N. Shaposhnikova
    CERN, Geneva, Switzerland
 
  In the framework of the LHC Injector Upgrade (LIU) project the radio-frequency (RF) systems of the synchrotrons in the LHC injector chain will undergo significant improvements to reach the high beam intensity and quality required by the High-Luminosity (HL) LHC. Following the recent upgrade of the longitudinal beam control system in the PS Booster (PSB), tests with Finemet cavities are being performed in view of a complete replacement of the existing RF systems in the PSB by ones based on this technology. In the PS a similar wide-band Finemet cavity has been installed as a longitudinal damper. New 1-turn delay feedbacks on the main accelerating cavities to reduce their impedance have also been commissioned. Additional feedback and beam control improvements are foreseen. A major upgrade of the main RF system in the SPS by regrouping sections of its travelling wave cavities, increasing the number of cavities from four to six, will reduce beam-loading and allow higher intensities to be accelerated. The upgrade includes the installation of two new RF power plants and new feedback systems. All upgrades will be evaluated with respect to their expected benefits for the beams to the LHC.  
slides icon Slides TUO1AB02 [4.317 MB]  
 
THO3AB04 Modeling and Feedback Design Techniques for Controlling Intra-bunch Instabilities at CERN SPS Ring 399
 
  • C.H. Rivetta, J.D. Fox, O. Turgut
    SLAC, Menlo Park, California, USA
  • W. Höfle, K.S.B. Li
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the U.S. Department of Energy under contract # DE-AC02-76SF00515 and the US LHC Accelerator Research Program (LARP).
The feedback control of intra-bunch instabilities driven by electron-clouds or strong head-tail coupling (transverse mode coupled instabilities –TMCI) requires bandwidth sufficient to sense the vertical position and apply multiple corrections within a nanosecond-scale bunch. These requirements impose challenges and limits in the design and implementation of the feedback system. This paper presents model-based design techniques for feedback systems to address the stabilization of the transverse bunch dynamics. These techniques include in the design the effect of noise and signals perturbing the bunch motion. They also include realistic limitations such as bandwidth, nonlinearities in the hardware and maximum power deliverable. Robustness of the system is evaluated as a function of parameter variations of the bunch.
 
slides icon Slides THO3AB04 [2.153 MB]