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Abstract
A promising new approach for designing controllers to sta-

bilize intra-bunch transverse instabilities is to usemulti-input
multi-output (MIMO) feedback design techniques. However,
these techniques require a reduced model and estimation of
model parameters based on measurements. We present a
method to identify a linear reduced order MIMO model for
the vertical intra-bunch dynamics. The effort is motivated
by the plans to increase currents in the Super Proton Syn-
chrotron as part of the HL-LHC upgrade where feedback
control techniques could be applied to stabilize the bunch
dynamics, allowing greater freedom in the machine lattice
parameters. Identification algorithms use subspace methods
to compute a discrete linear MIMO representation of the
nonlinear bunch dynamics. Data from macro particle sim-
ulation codes (CMAD and HEADTAIL) and SPS machine
measurements are used to identify the reduced model for
the bunch dynamics. These models capture the essential
dynamics of the bunch motion or instability at a particular
operating point, and can then be used analytically to design
model-based feedback controllers. The robustness of the
model parameters against noise and external excitation sig-
nals is studied, as is the effect of the MIMO model order on
the accuracy of the identification algorithms.

INTRODUCTION
Electron clouds and machine impedance can cause intra-

bunch instabilities at the CERN Super Proton Synchrotron
(SPS). The high current operation of the SPS for LHC injec-
tion requires mitigation of these problems. Modern control
techniques can be used to stabilize the bunch. These tech-
niques are powerful tools allowing us to evaluate and under-
stand the performance and the limits of the system before-
hand. Yet, they require reduced order models of intra-bunch
dynamics to design optimal or robust controllers for wide-
band feedback systems. System identification techniques
can be used to get these required reduced order models.

Nanosecond-scale bunch stabilization is more challenging
compared to the case of rigid body dipole coupled bunch
oscillations. It requires sufficient bandwidth to sense trans-
verse motion at multiple locations along the bunch and apply
correction signals to the corresponding parts of the bunch.
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Apart from these technological constraints, modeling the
intra-bunch dynamics is also more challenging compared to
the case of modeling the beam dynamics including bunch to
bunch interactions.

The feedback system senses the vertical positions at mul-
tiple locations within the nanosecond-scale bunch. Control
filters use these measurements to calculate correction sig-
nals and apply them back onto the bunch using the kicker
as actuator. A 4 Gs/Sec. digital feedback system has been
developed to process the motion signals and generate the
correction actions [1]. Due to very the fast intrinsic time
characteristics of the system, a parallel computation con-
trol filter architecture has been developed. A very similar
method had been used for bunch by bunch feedback control
systems [2].

In this paper, we show the use of system identification tech-
niques to estimate parameters of linear models representing
single bunch dynamics. We define the form of the reduced
order model. We pose the identification problem in a least
squares form [3] for given input-output data set. After a brief
discussion of identification constraints, we show results of
identification applied to data from SPS measurements and
nonlinear macro particle simulation codes.

MODEL AND IDENTIFICATION
Reduced Order Model and Identification
Any linear dynamical system can be represented in state

space matrix form. A discrete time system sampled at every
revolution period k with p inputs and q outputs is represented
by

Xk+1 = AXk + BUk

Yk = CXk

(1)

where U ∈ Rp is the control variable (external excitation),
Y ∈ Rq is the vertical displacement measurement, A ∈
Rn×n is the system matrix, B ∈ Rn×p is the input matrix,
and C ∈ Rq×n is the output matrix. For a MIMO system,
the model order determines the complexity. In this study,
we assumed time invariant dynamics which means having
constant A, B and Cmatrices in the state space model. When
it comes to the interactions between the bunch with electron
clouds or during energy ramping operations, time variant
dynamics has to be accounted for tune shifts, changing beam
parameters, etc.

System identification techniques require exciting the sys-
tem with appropriate signals and observing the response.
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A dynamical model is estimated based on the measured
input-output data. In particular for the bunch dynamics iden-
tification, the bunch is driven by a wide-band kicker using
a persistent excitation and measuring the vertical displace-
ments along the 3.2ns bunch length. The signals used in
the identification process are input U (k), where the vector
represents the multiple momentum kicks applied to the dif-
ferent locations along the bunch and the output Y (k) are the
vertical displacements measured at those locations.

Y (z) =
[
D−1(z)N (z)

]
U (z) (2)

where [] represents the transfer function matrix (∈ Rq×p)
for a system with p inputs and q outputs. D(z) and N (z)
represent denominator and numerator of each discrete time
transfer function between input-output couples.

N (z)U (z) − D(z)Y (z) = 0 (3)

U (z) =
T∑
i=0

Ui zi , Y (z) =
T∑
i=0

Yi zi (4)

D(z) =
m∑
i=0

Di zi , N (z) =
n∑
i=0

Ni zi (5)

[
Nr | − Dr

] [U (k)
Y (k)

]
= 0 (6)

Given the input and output signals, the estimation of the
parameter matrices Nr and Dr is obtained by solving the last
linear equation. There are many different subspace based
methods to solve this linear MIMO problem. These methods
use projections or singular value decomposition (SVD) to
cast the problem into linear least squares [4]. We follow [3]
where the construction of the data matrix from input and
output signals, the solution algorithm for Equation 6 and
the relationship between the transfer function coefficients
and the observable canonical state space form are shown.
Assuming full observability of the system, we can represent
our state space in discrete time observable canonical form.
This will enable us to estimate the minimum number of
parameters [3]. However, even for linear systems there are
two well known limitations for identification. These are the
effect of noise and lack of persistent excitation.

Persistent Input and Noise Sensitivity
Input signal design and persistent excitation are critical

aspects of system identification. Given a quasi-stationary
input of u with a dimension nu and with a spectrum φu (ω),
φu (ω) > 0 should hold for at least n distinct frequencies
for u to be a persistent excitation [5]. Random noise would
be ideal to excite all the modes in the system but requires
high excitation power and bandwidth. The hardware used
in these measurements puts constraints on both power and
bandwidth. The design of an input signal for identification
under given constraints becomes an important question for
the future studies.
Noise affects the performance of the identification, and

in certain cases can make identification impossible. We
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Figure 1: Deviation of estimated natural tune and damping
of the 1st mode from the true value for different SNR values.
Red line shows min SNR to get errors less than 10%, green
line is for errors less than 5%.

can quantify its effect by adding noise at different power
levels into a known system until the identification can no
longer clearly estimate the known dynamics. We drive a
synthetic 2 × 2 coupled MIMO system using a band limited
frequency chirp signal. Random noise at different power
levels was added to the output signals. The effect of noise
is tested by running the identification algorithm on input -
output data as we increase the noise level. Parameters of the
model and the corresponding modes of the identified model
are estimated for different noise level cases. We quantify
the effect of the signal to noise ratio (SNR) by comparing
the estimated parameters of the system with the original
2 × 2 MIMO system. Figure 1 shows the impact of noise
on the estimation of system parameters. For identification
algorithm to perform well, we need a SNR >∼ 8.

APPLICATIONS
Multiples MDs have been conducted at the CERN SPS

ring to drive the bunch with different excitations (open loop)
and also test feedback controllers to stabilize the bunch
(closed loop). Those measurements were conducted us-
ing a single bunch in the machine with intensities of about
1−1.5×1011 protons at the injection energy, 26 GeV and Q26
lattice configuration [6, 7]. The driven tests with different
excitation signals have been designed such that the kicking
signal is a persistent input for the system, and the collected
data can be use to study the identification algorithms and
quantify a reduced parametric model of the beam dynam-
ics. Similarly, data obtained from macro-particle simulation
codes (CMAD-HEADTAIL) has been used to test the identi-
fication algorithms and compare the dynamic model results
with those obtained from machine measurements.

SPS Measurements
The hardware installed in the CERN SPS allows us to

drive the bunch with limited bandwidth. The kicker used for
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these tests has a maximum bandwidth of 160 MHz, limiting
the spectrum of the momentum applied to the bunch. This
limit conditions the number of modes that can be identified
in the dynamic model because the final momentum is not a
persistent input to detect high order transverse modes in the
bunch. New kicker designs, fabrication and installation in
the CERN SPS ring are in progress to be able to drive the
bunch at higher frequencies [8].

The existing limited bandwidth kicker forces us to set our
reduced model to detect low order modes corresponding
to frequencies up to the second sideband (2 f s) around the
betatron frequency ( fβ). We use both mode 0 (barycentric
shape along longitudinal axis) and mode 1 (a 200 MHz sin-
gle cycle sine wave shape) excitation signals for which the
amplitude is modulated with a frequency chirp [1]. The
chirp covers fβ ± 2 f s in ∼ 15000 turns. Time alignment
between excitation signals and bunch gives us the flexibility
to excite a specific mode more dominantly. To improve the
SNR used in the identification, the vertical motion signal
is processed using a time-varying band-pass filter whose
central frequency follows the frequency variation of the ex-
citation signal applied.

Tailoring the reduced model to the low-order modes, it is
possible to use 4 coupled 2nd order differential equations
to capture the low-order dynamics of the bunch (mode 0 -
barycentric motion and mode ±1 - head-tail motion). The
input-output relationship (momentum kick to vertical dis-
placement) of the bunch is defined by a 4 ×4 MIMO system
with p = 4, q = 4 and n = 8. This MIMO model sets
the input and output vectors dimension (equation 1) to 4
for each sampling instance k. The measurement set-up ac-
quires either 16 or 32 samples across the bunch at each
sampling time k for the momentum kick and the vertical
displacement signals. To do identification with the corre-
sponding MIMO model, each sample in vectors Uk and Yk
(∈ R4×1) is calculated averaging either 4 or 8 consecutive
non overlapping samples of the 16 or 32 samples long origi-
nal data (e.g U (1, k),Y (1, k) is the average of samples 1-4,
U (2, k),Y (2, k), the average of samples 5-8 . . . etc).

Using these input-output signals, the identification algo-
rithm is evaluated and some results are analyzed. Figure 2
shows the time evolution of the 4 components of the vertical
displacement vector Yk for about 10000 turns. Measured
data is represented by the blue trace and the response of the
identified model is the red trace. It is important to notice that
the reduced order model is linear time invariant and cannot
capture external perturbations or parameter variations in the
bunch. Still, the envelope of the amplitude of the intra-bunch
vertical motion is captured in the time domain. The plots on
the right show measurements and the response of the model
in frequency domain for the same samples.
Figure 3 shows another data with strong excitation of

both mode 0 and 1st sideband (mode 1). We also see some
motion around 2nd and 3rd sideband. On the left, we see
the RMS spectrogram of the driven measurement with clear
mode 0, mode 1, mode 2 and mode 3 excitation around
turns ∼ 7000, ∼ 11500, ∼ 15500 and and ∼ 15500. On

the right side, we show the RMS spectrogram of bunch’s
vertical motion predicted by reduced model. It is important
to notice from the measured data (Fig. 3 - left) the effect of
nonlinearities either in the driving system or in the bunch.
The spectrogram analysis of the measured signal shows that
the 2nd ( fβ + 2 f s = 0.189) and 3rd sidebands are excited
before the chirp excitation drives the bunch motion at that
particular frequency. As expected, our linear model is able
to capture dominant characteristics and linear dynamics such
as motions at mode 0, mode 1 and mode 2 tunes, but not the
effect attributed to the non-linearity in the system.

Nonlinear Simulations
Similar techniques were applied to data obtained by non-

linear macro particle simulation codes such as HEADTAIL
and CMAD. These tools are especially very useful and help-
ful because they are accessible to study beam dynamics with-
out beam time in the machine. As soon as simulations are
benchmarked with machine measurements, the intra-bunch
dynamics can also be identified using data from these simu-
lations. As opposed to machine conditions and experiments,
simulations have control over noise, disturbances, etc. This
gives more flexibility and control to check the performance
of the identification algorithm.
In the simulation, the bunch is represented by 64 slices.

The bunch is excited by a chirp signal similar to the one used
in the experimental tests at CERN SPS. The shape (along
longitudinal axis) of the excitation signal is a 200 MHz sine
wave (single cycle in a 5ns RF bucket) for a given turn and
the amplitude of this head-tail shaped signal is modulated
by a frequency sweep. The sweep covers from the 2nd lower
sideband to 2nd upper sideband where betatron tune is 0.18
and synchrotron separation is 0.017 as given in Q-20 optics.
Figure 4 shows on the left side the vertical displacement

data across the bunch for 1000 turns. Due to the shape of
excitation signal across the bunch in this specific case, most
of the excitation energy is coupled to ±1 lateral bands and
we see very small amount of barycentric oscillations due to
residual kick. With appropriate excitation signals we can
study many multi-modal dynamics with the help of these
simulations.
Figure 4 shows on the right side the response of the re-

duced order model to the same excitation in time domain.
The relative error, which is calculated based on themaximum
deviation of the model’s response from the original simula-
tion data, is less than ∼ 10%. The reduced order model can
capture the dominant dynamics of the bunch successfully.
Similarly, results can also be seen in frequency domain as
show in Fig. 5 where on the left we see the spectrogram of
the vertical displacement data from the simulation and on the
right we have the spectrogram of the vertical displacement
obtained by the reduced order model.
One of the important identification parameters that we

can study is the estimation of the MIMO model order. Two
different approaches could be used. In the first approach,
as briefly explained in the "SPS Measurement" section we
proposed the order of the system based on the persistent
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Figure 2: Comparison of the reduced order model responses with machine measurements in time (amplitude of vertical
motion vs turns) and frequency domain. Dominant modes are mode 0 and mode 1 (1st upper sideband ).

Figure 3: On the left we see the spectrogram of physical measurement showing chirp excitation where we excite mode 0,
mode 1, mode 2, and mode 3 excitation around turns ∼ 7000, ∼ 11500, ∼ 15500, and ∼ 17500 respectively. On the right,
we see the same excitation and analysis applied to the reduced order model capturing linear dynamics.

Figure 4: Comparison of the reduced order model response with HEADTAIL simulation data in time domain. Relative
error between these two results are less than ∼ 10%. The reduced model and HEADTAIL simulation are driven by same
excitation signal.
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Figure 5: Comparison of the reduced order model response with HEADTAIL simulation data in frequency domain.

input signal. The model order was estimated based on the
modes that the excitation signal is able to drive in the bunch
and we constrained the input-output signals to identify that
reduced model (e.g. we averaged the measured samples in
order to reduce the number of inputs and outputs to identify
a 4 × 4 MIMO system with p = 4, q = 4 and n = 8.).
With the simulation data, we used the second approach in
the analysis. All the individual samples across the bunch
were taken into account to set N × N MIMO system with N
inputs, N outputs and 2N states. Identification is performed
based on an N ×NMIMOmodel and then a model reduction
technique is applied to the result based on Henkel Singular
Value (HSVD) analysis to get a minimum order balanced
realization of the model [4]. HSVD analysis indicates that
relative contributions of the first 6 states of 128 states (N =
64 case) are noticeable higher than the contributions of the
remaining states. Therefore, we can conclude that there are
6 states - 3 modes as dominant dynamics in the system and a
reduced order model with 6 states (order of 6) is enough to
capture dominant dynamics driven by this excitation signal.

CONCLUSION AND FUTURE WORK
Model-based control design techniques for intra-bunch

instabilities require a reduced model of the intra-bunch dy-
namics. We propose reduced order models and show initial
results of the identification of those models. We identify
parameters of a reduced order model that captures mode 0,
mode 1 and mode 2 dynamics from the CERN SPS machine
measurements. The natural tunes, damping values and the
separation of modes associated with the motion seen in mea-
surements are estimated correctly using a linear model. We
also show similar results using macro particle simulation
codes data. Dominant dynamics are captured with a reduced
order model and simulation data is regenerated successfully
in time domain. Future work is aimed at estimating more
internal modes as the wideband kicker will be available early
2015. Availability of the new wideband kicker also requires
careful analysis of persistency and optimality of the new
excitation signals for the estimation of higher order internal

modes. Optimal and robust controllers will be designed us-
ing identified reduced order models. These newmodel based
control architectures will be compared with the existing par-
allelized control filter architecture in terms of performance,
processing power and complexity requirements. We plan to
evaluate new controllers using macro particle simulations
and test in the SPS with single bunch mid 2015.
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