A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Franchetti, G.

Paper Title Page
WGA22 The S317 Experiment on High Intensity Beam Loss and Emittance Growth 128
 
  • G. Franchetti, W.B. Bayer, F. Becker, O. Chorniy, P. Forck, T. Giacomini, I. Hofmann, M. Kirk, T.S. Mohite, C. Omet, A.S. Parfenova, P. Schütt
    GSI, Darmstadt
 
 

In the talk we report on an extensive experimental campaign performed at GSI on the SIS18 synchrotron. We measured the evolution of beam properties over 1 second storage of several beams for several working points in the vicinity of a machine resonance. With this data we benchmark our code predictions and test the understanding of the underlying beam degradation mechanisms.

 

slides icon

Slides

 
WGB12 Prediction of the 4ν=1 Resonance of a High Intensity Linac 231
 
  • D.-O. Jeon
    ORNL, Oak Ridge, Tennessee
  • G. Franchetti, L. Groening, I. Hofmann
    GSI, Darmstadt
 
 

The 4ν=1 resonance of a linac is found when the depressed tune is around 90 deg. It is observed that this fourth order resonance is dominating over the better known envelope instability and practically replacing it. Simulation study shows a clear emittance growth by this resonance and its stopband. Experimental measurement of the stopband of this resonance is proposed and conducted in 2008 using the UNILAC at GSI. This study will serve as an excellent benchmarking.


SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

 

slides icon

Slides

 
CPL01 Summary of Group A: Beam Dynamics in High Intensity Circular Machines 482
 
  • R.A. Baartman
    TRIUMF, Vancouver
  • G. Franchetti
    GSI, Darmstadt
  • E. Métral
    CERN, Geneva
 
 

32 papers were presented. Rather than summarizing each one individually, we give a few highlights, conditioned by the items in the working group charge, namely:

  1. Summarize the state of the art in simulation capabilities. What developments are needed?
  2. Summarize the state of the art in theory. What developments are needed?
  3. Summarize recent developments in benchmarking experimental data with simulations. What critical experiments and diagnostic developments are needed to further refine the theory and simulations?
  4. Summarize the state of the art in instability mitigation techniques. What further technology developments are needed?
  5. Summarize the primary limitations to beam intensity in existing circular machines.
  6. Summarize the key beam dynamics questions for high-intensity circular machines
  7. Summarize opportunities for advancing the field.

 

slides icon

Slides