

SIS18 space charge experiments

G. Franchetti 26/8/2008 GSI, Darmstadt

The high intensity mechanism for emittance growth and beam loss in long term storage

The S317 campaign and the experimental results

Outlook

The purpose

The beam physics case: space charge induced periodic crossing of a ring resonance

Trapping/scattering into resonances

Consequences I: transverse beam blow up and beam loss

6

Consequences II: effect of beam loss on longitudinal profile

Correlation beam loss vs. bunch shortening

Precedent experimental campaign: CERN-PS

R. Cappi, G. Franchetti, M. Giovannozzi, I. Hofmann, E. Metral, M. Martini, R.Steeremberg ICFA2004

G. Franchetti

The space charge campaign at GSI S317

Law of experimentalists:

"Never replicate a successful experiment"

The people

I. Hofmann, W. Bayer, F. Becker, U. Blell, O. Boine-Frankenheim, O. Chorniy, P. Forck, T. Giacomini, M. Kirk, V. Kornilov, T. Mohite, C. Omet, A. Parfenova, S. Paret, P. Schuett, S. Sorge, P. Spiller

Systematic in the experiments

	low intensity (L)	high intensity (H)
Coasting Beam (CB)	only single particle nonlinear dynamics: transverse blow-up and beam loss	no resonance periodic crossing: but transverse emittance growth
Bunched Beam (BB)	single particle nl dynamics + chromaticity: larger transverse beam blow-up	Space charge trapping/scattering effects: beam loss/bunch-shortening

The SIS18 synchrotron

- 12 Auxiliary windings in the dipoles (only 6 works well)
- 12 small vertical dipoles
- 4 quadrupole correctors
- 8 skew quadrupoles (independent)
- 2 skew sextupoles (independent)
- 12 sextupoles located every other period close to the F and D quads (independent)
- 4 Q_v=13 cannot be controlled (no octupoles)
- Skew 3rd order: $2 Q_x + Q_y = 12$, $3 Q_y = 10$, $2 Q_x Q_y = 5$ (difficult with 2 skew)
- Normal 3rd order: $-Q_x + 2 Q_y = 2$, $3 Q_x = 13$, $Q_x + 2 Q_y = 11$

NO octupole present in SIS18

(B. Franczak, A. Redelbach, C. Mühle)

The SIS18 resonances

Choice of the working point

26/8/2008

scans in proximity of the 3rd order resonance

After correction of the closed orbit

Experimental setup

UNILAC beam optimized for high intensity Barth, Dahl, Groening

Beam injection optimized (P. Spiller, P. Schuett)

high intensity

beam size smaller than SIS acceptance

RF capture obtained via an 'external' RF cycle control (O.Choriny + RF group)

Goal

RF control

Beam @ injection

Ion: 40Ar+18 $\mathcal{E}_{x} \sim 6 \text{ mm-mrad}$ $\mathcal{E}_{v} \sim 4 \text{ mm-mrad}$ dp/p rms ~ 10⁻³ harmonic = 4RF voltage = 4 KV Injection energy = 11.4 MeV/uStorage time = $1 \text{ sec.} = 2 \times 10^5 \text{ turns}$

Systematic use of the RGM for the transverse

Simultaneous acquisition of transverse/longitudinal beam profiles during 1 second storage time.

CBL: peak tuneshift

G S 1

CBL: measurement of stop band

CBL: transverse evolution off the 3rd order resonance

CBL: transverse evolution in the 3rd order resonance

BBL: peak tune-shift

 $B_{f} = 1/3$

BBL: beam loss and emittance graowth

bunched beam low intensity

26

Comparison CBL vs. BBL

BBH: peak tune-shift

26/8/2008

BBH: beam loss and emittance growth

bunched beam high intensity

Transverse evolution BBH

Conclusion/Outlook

We compared 4 beams: CBL,CBH,BBL,BBH

We find that only when a beam is bunched and the intensity is high the beam evolution, in terms of transverse emittance growth and beam loss and longitudinal beam shrinking, is consistent with the theoretical mechanism of particle trapping/scattering into a **3rd order resonance**

We have expended the experimental studies started in the CERN-PS in 2002/2003 and retrieved identical beam behavior

Simulation-benchmarking of this experiment

