The 4v=1 resonance of a high intensity linac

I. Hofmann, L. Groening, G. Franchetti (GSI) HB 2008 August 25-29, 2008

- This work is the result of the collaboration between GSI and SNS.
- Thanks to J. Galambos, S. Henderson for the support.

History of halo formation mechanisms

- Until 1998, mismatch was the only known mechanism of halo formation.
- Late 1998, halo formation by the 2v_x 2v_y =0 resonance in the ring was discovered by D. Jeon (presented by J. Holmes at PAC99) → leading to other resonance induced halo studies in the ring.
- Since then coupling resonance in the linac has been studied extensively by many.
- Other halo formation mechanisms have been discovered such as non-round beam (D. Jeon, APAC07), rf cavity (M. Eshraqi) etc.
- Widely believed that there is no other resonance in the linac...

Review Non-Round Beam induced Halo Formation Optics modification improves beam quality

Nominal SNS MEBT Optics

Round Beam MEBT Optics

Round Beam Optics improves X beam quality (Emittance Measurement)

Nominal Optics ϵ_{χ} = 0.349 mm-mrad (1% threshold) 0.454 mm-mrad (0% threshold)

Round Beam Optics ϵ_{χ} = 0.231 mm-mrad (1% threshold) 0.289 mm-mrad (0% threshold)

Round Beam Optics reduces halo and rms emittance in X significantly

Tail is significantly reduced for Round Beam Optics

- Round Beam Optics reduces beam tail visibly
- This tail is the source of beam loss in downstream linac

Round Beam Optics improves Y beam quality (Emittance Measurement)

 ϵ_{Y} = 0.353 mm-mrad (1% threshold) 0.472 mm-mrad (0% threshold) $\epsilon_{\rm Y}$ = 0.264 mm-mrad (1% threshold) 0.306 mm-mrad (0% threshold)

Round Beam Optics reduces halo and rms emittance in Y significantly

Envelope instability

- Envelope equation predicts envelope instability at 90° phase advance.
- Linac design including the SNS linac has avoided the 90° phase advance because of the envelope instability!
- GSI UNILAC has the capability to scan well beyond 90° phase advance + emittance scanner.
- D. Jeon made a proposal to GSI to do an experiment to measure the stop-band of the envelope instability.

SNS Linac design Phase & Quad Laws Avoid the Envelope Instability and the Coupling Resonance

Discovery of the 4v=1 resonance of a linac driven by space charge

- Linac simulation study finds the 4v=1 resonance when the depressed phase advance is about 90°, rather than the envelope instability.
- This 4v=1 resonance is dominating over the better known envelope instability and practically replacing it.
- It should be stated that linac design should avoid 90° phase advance because of the 4v=1 resonance rather than the envelope instability!!

4v=**1** resonance crossing from below

phase advance

• rms emittance

Beam distribution when crossing the 4v=1 resonance from below

4v=1 resonance crossing from above

phase advance

rms emittance

Beam distribution when crossing the 4v=1 resonance from above

Stable fixed points move from the origin afar.

• This traps beam particles.

No resonance effect $\sigma > 90^{\circ}$

phase advance

rms emittance

It seems that no resonance effect σ > 90° When σ ~ 95°

It seems that no resonance effect σ > 90° When σ ~ 95°

There is no sign of resonance effect on the beam distribution

Resonance takes effect for $\sigma \leq 90^{\circ}$

phase advance
 rms emittance

• Emittance growth when $\sigma \leq 90^{\circ}$

CAK RIDGE National Laboratory

resonance effect $\sigma \le 90^{\circ}$ When $\sigma \sim 85^{\circ}$

19 Managed by UT-Battelle for the Department of Energy

National Laboratory

resonance effect $\sigma \le 90^{\circ}$ When $\sigma \sim 85^{\circ}$

Effects of input beam mismatch effects of resonance and mismatch manifest

Scaling law when crossing the 4v=1 resonance

- Emittance growth is a function of S≡ ∆v∆n = (∆v)²/(dv/dn).
 (I. Hofmann et al)
- $\varepsilon \approx (1 + \alpha \Delta v \Delta \mathbf{n}) \varepsilon_{o}$
- $\Delta \varepsilon / \varepsilon_o \approx \alpha \Delta v \Delta n$
- For the linac 4v=1 resonance, the emittance growth is a linear function of $\Delta v \Delta n$.

Scaling law when crossing the resonance

- $\Delta \varepsilon / \varepsilon_o \approx \alpha \Delta v \Delta n = \alpha S$.
- For downward 4v=1 resonance crossing, $\alpha \approx$ 0.31

• For upward 4v=1 resonance crossing, $\alpha \approx 0.37$

Emittance growth for fixed phase advance

• roughly proportional to X^{3.5}

Efforts to measure the 4v=1 resonance stop-band using the GSI UNILAC

- Simulated $\epsilon_{\rm rms}$ vs σ_0 at the end of Tank A1 of UNILAC.
- About 45% of rms emittance increase is anticipated.
- New emittance scanner to be installed between Tank A1 and A2.

Summary

- Discovery of a new halo formation mechanism, 4v=1 resonance for a linac was made.
- This is one step forward to Grand Unification of Linac and Ring beam dynamics.
- Linac design should avoid 90° phase advance because of the 4v=1 resonance rather than the better known envelope instability!!
- Efforts are undertaken to measure the 4v=1 resonance stop-band at GSI, Germany.
- Is envelope instability a theoretical artifact??

• Thanks for the attention.

Fraction of core in x plane sees nonlinear space charge force, resulting in halo formation in x plane

Space charge force and real space distributions

Sources of Front End halo generation

- MEBT is the largest contributor to FE halo generation
- Nonlinear space charge force stemming from a large transverse beam eccentricity generates halo in MEBT (D. Jeon *et al*, PRST-AB 5, 094201 (2002))
- As minor contributors, several FE components and physical effects may contribute to the generation of beam halo

Optics modification alone reduces halo significantly in simulations (Simulation)

for the Department of Energy

Tail is significantly reduced for Round Beam Optics

- Round Beam Optics reduces beam tail visibly
- This tail is the source of beam loss in downstream linac

Gesellschaft für Schwerlonenforschung GSI

FAIR: <u>Facility for Antiproton and Ion Research</u>

for the Department of Energy

Presentation_name

UNILAC at GSI: Overview

Set-up for Measurements

UNILAC at GSI: Requirements (Uranium)

Design: 4.6 mA, Status 2001: 0.37 mA, Status today: 2.0 mA

Benchmarking efforts at GSI

- It needs to better understand the UNILAC for higher beam current requirement of FAIR project.
- GSI waged a campaign of measuring the output beam emittance, varying the zero current phase advance from 35° to 90°.
- Efforts to compare the experiment with simulation of codes.
- Three different codes have been used: DYNAMION (GSI), PARMILA, PARTRAN (France).

Code benchmarking effort comparing exp (100%) and simulation (100%)

Comparison of 100% rms emittance suffers from noise in measurement data

Code benchmarking effort comparing exp (90%) and simulation (95%)

Code benchmarking effort comparing exp (95%) and simulation (95%)

• Coming soon!!

