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• This work is the result of the collaboration 
between GSI and SNS.

• Thanks to J. Galambos, S. Henderson for the 
support.
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History of halo formation mechanisms

• Until 1998, mismatch was the only known mechanism of 
halo formation.

• Late 1998, halo formation by the 2νx - 2νy =0 resonance 
in the ring was discovered by D. Jeon (presented by J. 
Holmes at PAC99) leading to other resonance 
induced halo studies in the ring.

• Since then coupling resonance in the linac has been 
studied extensively by many. 

• Other halo formation mechanisms have been 
discovered such as non-round beam (D. Jeon, APAC07), 
rf cavity  (M. Eshraqi) etc.

• Widely believed that there is no other resonance in the 
linac…
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Review
Non-Round Beam induced Halo Formation       
Optics modification improves beam quality

Nominal SNS MEBT Optics

Round Beam MEBT Optics

z
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Round Beam Optics improves X beam quality  
(Emittance Measurement)

• Round Beam Optics reduces halo and rms emittance 
in X significantly

Nominal Optics
εX= 0.349 mm-mrad (1% threshold)

0.454 mm-mrad (0% threshold)

Round Beam Optics
εX= 0.231 mm-mrad (1% threshold)

0.289 mm-mrad (0% threshold)
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Tail is significantly reduced for Round Beam Optics

• Round Beam Optics reduces beam tail visibly
• This tail is the source of beam loss in downstream linac

Round Beam Optics 

Measured

No Tail!!

Nominal Optics

Measured
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Round Beam Optics improves Y beam quality  
(Emittance Measurement)

• Round Beam Optics reduces halo and rms emittance 
in Y significantly

Nominal Optics
εY= 0.353 mm-mrad (1% threshold)

0.472 mm-mrad (0% threshold)

Round Beam Optics
εY= 0.264 mm-mrad (1% threshold)

0.306 mm-mrad (0% threshold)



8 Managed by UT-Battelle
for the Department of Energy Presentation_name

Envelope instability

• Envelope equation predicts envelope instability 
at 90° phase advance.

• Linac design including the SNS linac has 
avoided the 90° phase advance because of the 
envelope instability!

• GSI UNILAC has the capability to scan well 
beyond 90° phase advance + emittance scanner.

• D. Jeon made a proposal to GSI to do an 
experiment to measure the stop-band of the 
envelope instability.
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SNS Linac design                                         
Phase & Quad Laws Avoid the Envelope 
Instability and the Coupling Resonance



10 Managed by UT-Battelle
for the Department of Energy Presentation_name

Discovery of the 4ν=1 resonance of a 
linac driven by space charge

• Linac simulation study finds the 4ν=1 resonance 
when the depressed phase advance is about 90°, 
rather than the envelope instability.

• This 4ν=1 resonance is dominating over the 
better known envelope instability and practically 
replacing it. 

• It should be stated that linac design should avoid 
90° phase advance because of the 4ν=1 
resonance rather than the envelope instability!!
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4ν=1 resonance crossing from below

• phase advance
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Beam distribution when crossing the 4ν=1  
resonance from below

Initial beam distribution

X Y

X’ Y’
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4ν=1 resonance crossing from above
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Beam distribution when crossing the 4ν=1  
resonance from above

• Stable fixed points move from the origin afar.

• This traps beam particles.

X Y

X’ Y’
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No resonance effect σ > 90º
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It seems that no resonance effect σ > 90º  
When σ ~ 95°

X

Y
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It seems that no resonance effect σ > 90º  
When σ ~ 95°

There is no sign of resonance effect 
on the beam distribution

X Y

X’ Y’
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Resonance takes effect for σ <= 90º

• Emittance growth when σ <= 90°
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resonance effect σ <= 90º                             
When σ ~ 85°

X

Y
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resonance effect σ <= 90º                             
When σ ~ 85°

X Y

X’ Y’
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Effects of input beam mismatch                  
effects of resonance and mismatch manifest

X Y

Y’X’

well matched

mismatched
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Scaling law when crossing the 4ν=1 resonance

• Emittance growth is a function of S≡ ΔνΔn = (Δν)2/(dν/dn). 
(I. Hofmann et al)

• ε ≈ (1 + αΔνΔn) εo

• Δε/εo ≈ αΔνΔn
• For the linac 4ν=1 resonance, the emittance growth is a 

linear function of ΔνΔn.
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Scaling law when crossing the resonance

• Δε/εo ≈ αΔνΔn = αS.
• For downward 4ν=1 resonance crossing, α ≈ 0.31
• For upward 4ν=1 resonance crossing, α ≈ 0.37

•

Δ
≡

ν

ν 2)(S

α=0.31

α=0.37
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Emittance growth for fixed phase advance

• roughly proportional to X3.5

X
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Efforts to measure the 4ν=1 resonance 
stop-band using the GSI UNILAC
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• Simulated εrms vs σ0 at the end of Tank A1 of UNILAC.

• About 45% of rms emittance increase is anticipated.

• New emittance scanner to be installed between Tank 
A1 and A2.
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Summary 

• Discovery of a new halo formation mechanism, 
4ν=1 resonance for a linac was made.

• This is one step forward to Grand Unification of 
Linac and Ring beam dynamics.

• Linac design should avoid 90° phase advance 
because of the 4ν=1 resonance rather than the 
better known envelope instability!!

• Efforts are undertaken to measure the 4ν=1 
resonance stop-band at GSI, Germany.

• Is envelope instability a theoretical artifact??
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• Thanks for the attention.
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Fraction of core in x plane sees nonlinear space 
charge force, resulting in halo formation in x plane

Space charge force and real space distributions

Beam at the chopper target

potential halo
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Sources of Front End halo generation

Region with a large transverse beam eccentricity ~2:1

• MEBT is the largest contributor to FE halo generation 

• Nonlinear space charge force stemming from a large transverse 
beam eccentricity generates halo in MEBT  
(D. Jeon et al, PRST-AB 5, 094201 (2002))

• As minor contributors, several FE components and physical effects 
may contribute to the generation of beam halo 

MEBT optics

~1.6 m

Chopper target

Beam

RFQ DTL

X

Y

Z
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Optics modification alone reduces halo significantly in 
simulations (Simulation)

CCL bore

Half optics
modified

Round Beam Optics

Nominal Optics
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Tail is significantly reduced for Round Beam Optics

• Round Beam Optics reduces beam tail visibly
• This tail is the source of beam loss in downstream linac

Round Beam Optics 

Measured

No Tail!!

Nominal Optics

Measured
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Gesellschaft für SchwerIonenforschung GSI

UNILAC, p – U : 3 – 12 MeV/u

Synchrotron, Bρ = 18 Tm
p:   4 GeV
Ne: 2 GeV
U:   1 GeV

3 sources

ion species vary from pulse to pulse:
simultaneous experiments using different ions

Stor. Ring, Bρ = 10 Tm

Fragment Separator

High Energy Physics
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p-bar target

p-linac

Super- FRS

SIS100
SIS300

HESR

CR
RESR

Unilac

The FAIR Accelerator Complex
SIS 100

NESR

HESR Antiproton 
Prod. Target

SIS18

CR

GSI Today 

RESR

p-linac SIS 300

UNILAC

FAIR 

100 m

FAIR:  Facility for Antiproton and Ion Research

7⋅1010 cooled pbar / hour
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UNILAC at GSI:   Overview

MEVVA

MUCIS

PIG
RFQ       IH1         IH2

Alvarez DTL

HLI: (ECR,RFQ,IH)

Transfer to
Synchrotron

2.2 keV/u
β = 0.0022

120 keV/u
β = 0.016

11.4 MeV/u
β = 0.16

RFQ, IH1, IH2 Alvarez DTL Single Gap 
Resonators

From HSI

Gas Stripper

Slit-Grid

From HLI

Beam Current Long. Emitt.

36 MHz Buncher
Quads

Pepper Pot

Alvarez
108 MHz

Gas Stripper

1.4 MeV/u
β = 0.054

U4+ U28+
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Set-up for Measurements

Alvarez DTL Section SGR

• Beam Current Measurement

• Beam Emittance Measurement (transv.)

• Beam Profile Measurement

from

HSI

Matching to DTL

Gas Stripper
40Ar1+ 40Ar10+
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Requirements to obtain the SIS space charge limit 
(a twentyfold multiturn injection is supposed) 

 
( 

 HSI 
entrance 

HSI 
exit 

Alvarez 
entrance 

SIS 18 
injection 

SIS 18 
injection 

(Future) 
ION SPECIES 238U4+ 238U4+ 238U28+ 238U28+ 238U28+ 

El. Current [mA] 16.5 15 12.5 8.4* 15 
Part. per 100μs 
pulse 

2.6⋅1012 2.3⋅1012 2.8⋅1011 1.9⋅1011* 3.5⋅1011 

Energy [MeV/u] 0.0022 1.4 1.4 11.4 11.4 

ΔW/W - ±4⋅10-3 ±2⋅10-3 ±2⋅10-3 ±2⋅10-3 

εn,x  [mm mrad] 0.3 0.5 0.75 0.8 0.8-1.1 

εn,y  [mm mrad] 0.3 0.5 0.75 2.5 - 

4.6

4.2·1010

11.4

±2·10-3

0.8

238U73+

SIS 18
Injection

Design: 4.6 mA,   Status 2001: 0.37 mA,  Status today: 2.0 mA

UNILAC at GSI :   Requirements (Uranium)
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Benchmarking efforts at GSI

• It needs to better understand the UNILAC for 
higher beam current requirement of FAIR 
project.

• GSI waged a campaign of measuring the 
output beam emittance, varying the zero 
current phase advance from 35° to 90°.

• Efforts to compare the experiment with 
simulation of codes.

• Three different codes have been used: 
DYNAMION (GSI), PARMILA, PARTRAN 
(France).
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Code benchmarking effort                   
comparing exp (100%) and simulation (100%)

• Comparison of 100% rms emittance suffers from 
noise in measurement data
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Code benchmarking effort                   
comparing exp (90%) and simulation (95%)

• Gap between experiment and simulation narrows.
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Code benchmarking effort                   
comparing exp (95%) and simulation (95%)

• Coming soon!!
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