A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    

cryogenics

      
Paper Title Other Keywords Page
MOXBCH01 Industrial Technology for Unprecendented Energy and Luminosity: the Large Hadron Collider hadron, collider, vacuum 6
 
  • P. Lebrun
    CERN, Geneva
  With over 2.7 billion Swiss francs procurement contracts under execution in industry and the installation of major technical systems proceeding in its first 3.3 km sector, the Large Hadron Collider (LHC) construction is now in full swing at CERN, the European Organization for Nuclear Research. The LHC is not only the most challenging particle accelerator under construction, it is also the largest global project ever for a scientific instrument based on advanced technology. Starting from accelerator performance requirements, we recall how these can be met by an appropriate combination of technologies, such as high-field superconducting magnets, superfluid helium cryogenics, beam and insulation vacuum or power electronics, with particular emphasis on the developments required to meet demanding specifications, and the industrialization issues which had to be solved for achieving series production of precision components under tight quality assurance and within limited resources. This provides the opportunity for reviewing the production status of the different systems and the progress of the project.  
Video of talk
Transparencies
 
MOYCH01 The TESLA XFEL Project linac, hadron, collider, vacuum 11
 
  • H. Weise
    DESY, Hamburg
  The overall layout of the X-Ray FEL to be built in international collaboration at DESY will be described. This includes the envisaged operation parameters for the linear accelerator which will use TESLA technology. Main emphasis is put on the specification of the superconducting accelerator modules. Other linac components will be described as well. Work packages needed to finalize the linac design will be presented. A summary of the status of the preparation work will be given.  
Video of talk
Transparencies
 
MOYCH02 Physics Challenges for ERL Light Sources hadron, collider, extraction, vacuum 16
 
  • L. Merminga
    Jefferson Lab, Newport News, Virginia
  We present an overview of the physics challenges encountered in the design and operation of Energy Recovering Linac (ERL) based light sources. These challenges include the generation and preservation of low emittance, high-average current beams, manipulating and preserving the transverse and longitudinal phase space, control of the multipass beam breakup instability, efficient extraction of higher order mode power and RF control and stability of the superconducting cavities. These key R&D issues drive the design and technology choices for proposed ERL light sources. Simulations and calculations of these processes will be presented and compared with experimental data obtained at the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in commissioning, and during a 1 GeV demonstration of energy recovery at CEBAF.  
Video of talk
Transparencies