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OutlineOutline
! ERL Light Source
! Promise of ERL Light Sources

� Free Electron Laser ERLs
� Synchrotron Light Source ERLs

! Realization of the promise
� Challenge I: Generation and preservation of low 

emittance, high average current beam
� Challenge II: Accelerator transport
� Challenge III: High current effects in Superconducting RF

! A bright future: ERL LS projects and proposals worldwide
! Summary
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Energy Recovery Linac Light SourceEnergy Recovery Linac Light Source
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ERL vs. Storage Ring vs. LinacERL vs. Storage Ring vs. Linac
! While an electron storage ring stores the same electrons for 

hours in an equilibrium state, an ERL stores the energy of the 
electrons. 

! In an ERL electrons spend little time in the accelerator (~1 µs), 
therefore they never reach an equilibrium state. 

! In common with linacs: In an ERL the 6-D beam phase space 
is largely determined by electron source properties by design.

! In common with storage rings: An ERL possesses high 
average current-carrying capability enabled by the ER 
process, thus promising high efficiencies.
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Reality and Promise of FEL ERLsReality and Promise of FEL ERLs
The promise:The promise:

High average laser power (~ 100 kW)High average laser power (~ 100 kW)
High overall system efficiencyHigh overall system efficiency
Reduced beam dump activationReduced beam dump activation

The reality:The reality:

  Injector 

Beam dump 

IR wiggler 

Superconducting  rf  linac 

UV wiggler 

Injector 

Beam dump 

IR wiggler 

Superconducting  rf  linac 

UV wiggler 

Achieved 8.5 kW CW IR power on June 24, 2004!Achieved 8.5 kW CW IR power on June 24, 2004!

JLab 10kW IR FEL and 1 kW UV FEL

Energy recovered up to 5mA at 145 MeV, up to 9mA at 88 MeVEnergy recovered up to 5mA at 145 MeV, up to 9mA at 88 MeV
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Promise of Synchrotron Light ERLsPromise of Synchrotron Light ERLs
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Promise of Synchrotron Light ERLsPromise of Synchrotron Light ERLs
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SL User Requirements and Beam SL User Requirements and Beam 
PropertiesProperties

*quantities are rms

High average 
brilliance

B∝ NuIave/εxεy

High average 
brilliance

B∝ NuIave/εxεy

Full spatial 
coherence
ε < λ/4π

Full spatial 
coherence
ε < λ/4π

High average 
flux ∝ Iave

High average 
flux ∝ Iave High temporal 

coherence
High temporal 

coherence
Sub-ps x-ray 

pulses
Sub-ps x-ray 

pulses

High average 
current

(~100 mA)

High average 
current

(~100 mA)

Low emittance
(εN≤1 mm-mrad)*
& round beams

Low emittance
(εN≤1 mm-mrad)*
& round beams

Small energy 
spread 

(σE/E ~10-4)*

Small energy 
spread 

(σE/E ~10-4)*

Sub-ps
bunch length
(~100 fsec)*

Sub-ps
bunch length
(~100 fsec)*

Variable filling 
patterns 

Variable filling 
patterns 

Long insertion 
devices 

Long insertion 
devices 
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Challenge I:Challenge I: Generation and Generation and 
Preservation of Low Emittance, Preservation of Low Emittance, 
High Average Current BeamsHigh Average Current Beams

In an ERL, highest quality beam must be 
produced at the source, and preserved in 
the low-energy regime

Ia. High accelerating gradients or high 
repetition rate? Or both?

Ib. Getting beyond the space charge limit
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DC DC photoinjectorsphotoinjectors

! High repetition rate up to 75 MHz

! εN,rms~7-15 mm-mrad for Q~ 60 �135 pC

(measured at the wiggler)

! Average current up to 9 mA

! Cathode voltage: 350 � 500 kV

State-of-the-art: JLAB FEL gun
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Beyond the space charge limitBeyond the space charge limit

Courtesy of I. BazarovCourtesy of I. Bazarov

0.1 mm0.1 mm--mradmrad, 80 , 80 pCpC, 3ps, 3ps

500-750 kV DC 
Photoemission Gun

Buncher

Solenoids 2-cell SRF cavities

Merger dipoles 
into ERL linac

Cornell ERL PrototypeCornell ERL Prototype
Injector LayoutInjector Layout

injector optimizations at 80 pC
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RF RF photoinjectorsphotoinjectors
! High accelerating gradients (~100 MV/m) to rapidly 

accelerate electrons beyond the space charge regime, 
thereby reducing emittance growth. 

! To date RF guns have produced best normalized 
emittances:    
eN~ 1 µm at Q~ 0.1 � 1 nC , but at relatively low rep rate 
(10-100 Hz)

! Boeing gun operated at 433 MHz with 25% duty factor

! Challenge: Balance high gradient (low emittance) with high 
rep rate (thermal effects) 
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SRF SRF photoinjectorsphotoinjectors

BNL 
development

SRF gun
with diamond 
amplified cathode

! High CW RF fields possible
! Significant R&D required

Rossendorf proof of principle 
experiment:

1.3 GHz, 10 MeV
77 pC at 13 MHz and 1 nC at < 1 MHz

BNL/AES/JLAB development
High Iave & brightness gun under test: 
1.3 GHz ½-cell Nb cavity at 2K
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Challenge II:Challenge II: Accelerator TransportAccelerator Transport
6-D emittance preservation and phase space 
management during acceleration and energy 
recovery

IIa. Longitudinal matching

IIb. Coherent Synchrotron Radiation

IIc. Transverse matching
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Longitudinal MatchingLongitudinal Matching
Requirements: 
! Synchrotron Light ERLs: 

Short X-ray pulses may require bunching during 
acceleration

! FEL ERLs: 
� High peak current (short bunches) at the FEL
� Large energy spread after lasing (δE/E~10%) must be 

decompressed
� Small energy spread at the dump

The challenge: 
Nonlinear distortions in phase space must be corrected for 
minimum bunch length and proper energy recovery
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Longitudinal Dynamics in JLAB 2 kW FELLongitudinal Dynamics in JLAB 2 kW FEL
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Why We Need the �Right� TWhy We Need the �Right� T566566
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Coherent Synchrotron RadiationCoherent Synchrotron Radiation

Radiation wavelength longer than bunch length: coherent 
emission. 
Radiation from the bunch tail catches up with the head can 
increase energy spread and emittance           potentially 
serious for high brightness beam quality preservation.
In SL ERLs bunch charge relatively small (~0.1 nC) and bunch 
length ~0.1-1 ps, however emittance preservation important. 
CSR needs to be studied.
Challenge: Minimize emittance growth due to CSR. 
Optics schemes are being developed to minimize the effects.  
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Transverse MatchingTransverse Matching
Requirement:

! Synchrotron Light ERLs: High energy (GeV 
scale) demonstration of energy recovery. A 
significant extrapolation from FEL ERL 
paradigm (~ 100 MeV).

The challenge: 

! Demonstrate sufficient operational control of 
two coupled beams of substantially different 
energies in a common transport channel, in the 
presence of steering, focusing errors.
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CEBAFCEBAF--Energy Recovery ExperimentEnergy Recovery Experiment

!! CEBAFCEBAF--ERER is a 1 GeV demonstration of energy 
recovery in CEBAF � 40 cryomodules. 

� Quantify evolution of transverse phase space 
during acceleration and energy recovery. 

� Test the dynamic range of system: large ratio of 
final-to-injected (Efin/Einj) beam energies               

Larger Efin/Einj ratio            higher ERL efficiency!
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CEBAFCEBAF--ER ExperimentER Experiment

50 MeV

500 MeV

500 MeV

1 GeV
1 GeV

500 MeV 500 MeV

50 MeV

Special installation of a 
λRF/2 path length delay 
chicane, dump and 
beamline diagnostics. 



L. Merminga EPAC04 July 5-9 2004Operated by the Southeastern Universities Research Association for the U.S. Department of  Energy

Thomas Jefferson National Accelerator Facility Page 22

CEBAFCEBAF--ER Preliminary ResultsER Preliminary Results
! Demonstrated a significant operational extension of 

energy recovery to high energy (1 GeV), through a 
large (~1 km circumference), superconducting RF 
system (40 cryomodules).

! Demonstrated feasibility of energy recovery with ratio 
of final-to-injected energy up to 50:1 (1GeV 20 MeV). 

! No significant emittance dilution was measured as a 
result of the energy recovery process. No surprises 
were uncovered.
�The CEBAF ER Experiment�  MOPKF087
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Challenge III:Challenge III: High Current Effects in High Current Effects in 
Superconducting RFSuperconducting RF

Beam stability and beam quality preservation, and 
cryogenic efficiency during acceleration/deceleration of 
high average current, short bunch length beams in SRF 
environment 

IIIa. Efficient extraction of HOM power

IIIb. Stability against multipass beam breakup



L. Merminga EPAC04 July 5-9 2004Operated by the Southeastern Universities Research Association for the U.S. Department of  Energy

Thomas Jefferson National Accelerator Facility Page 24

HOM Power DissipationHOM Power Dissipation
! High average current, short bunch length beams 

in SRF cavities excite HOMs. On average, HOM 
power loss per cavity is: 

PHOM = 2 k|| Qbunch Iave

and extends over high frequencies (~100 GHz). 

The challenge: 

! Adequate damping of HOMs and extraction of 
HOM power with good cryogenic efficiency.
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Frequency Distribution of HOM PowerFrequency Distribution of HOM Power
Monopole Mode Single Bunch Power Excitation per 9-Cell Cavity

σbunch = 0.7 mm, qbunch = 77 pC
Ptotal = 185 W
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HOM damping scheme for the HOM damping scheme for the 
Cornell ERLCornell ERL

Courtesy: M. Courtesy: M. LiepeLiepe

fHOM > 5 GHz
Propagate along structure, get 

absorbed by ferrite rings at 80 K 

fHOM < 5 GHz
Absorbed at room temperature loads
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MultipassMultipass Beam BreakupBeam Breakup

! In recirculating linacs, multipass beam breakup (BBU), 
driven predominantly by high-Q superconducting cavities, 
can potentially limit the average current. 

! The �feedback� system formed between beam and cavities is 
closed and instability can result at sufficiently high currents.

! Energy recovering linacs can support enough beam current 
to reach the threshold of the instability. 
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Multipass Beam BreakupMultipass Beam Breakup

SUPERCONDUCTING CAVITY

HOMs
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BBU Simulation and ObservationBBU Simulation and Observation
BBU observation in the 
JLAB 10 kW FEL (88MeV)

BBU simulations of the JLAB 
10 kW FEL (145 MeV) 

FEL Upgrade with Zone 3 ONLY
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Growth Rate vs. Beam CurrentGrowth Rate vs. Beam Current
Calculated from

the data measured
in pulsed regime
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Beam Breakup MeasurementsBeam Breakup Measurements
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Suppressing Beam BreakupSuppressing Beam Breakup

Injector

Linear Accelerator

Skew - Quadrupole Rotator

= Horizontal phase space 
coordinates (x,x�)

= Vertical phase space 
coordinates (y,y�)

No Rotation

With Rotation

�Reflecting� or �Rotating� Beam Optics: Phase space is 
rotated such that x′ -> y and y′ -> x leading to higher 
threshold currents

Skew quads installed in JLAB FEL
Ready for tests.

R. Rand and T. Smith, Particle Accelerators 1980,  Vol. II, pp. 1-13
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Lower Frequency SRF DevelopmentLower Frequency SRF Development

Develop CW SRF cavity for high intensity beams:
Large bore, 700 MHz cavity with ferrite HOM 
dampers and high beam break-up threshold

BNL-JLAB collaboration

Courtesy of I. Ben-Zvi

Predicted BBU threshold current > 1 Amp!Predicted BBU threshold current > 1 Amp!
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How close are we?How close are we?

! Beam energy of 5-7 GeV � up by 5-7

! 1300-1500 MHz bunch repetition rate � up by 17-20

! 100 mA or higher average beam current � up by 10

! Normalized rms emittance ~1-2 mm-mrad at full energy �
down by 5-10

! Bunch length from ~ 1 ps to < 0.1 ps � down by 4
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Presently Operating FEL ERLsPresently Operating FEL ERLs

  Injector 

Beam dump 

IR wiggler 

Superconducting  rf  linac 

UV wiggler 

Injector 

Beam dump 

IR wiggler 

Superconducting  rf  linac 

UV wiggler 

JAERI FEL

BINP 
Recuperator FEL
180 MHz NC RF

JLAB FEL
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A bright future: Synchrotron Light A bright future: Synchrotron Light 
ERL Proposals WorldwideERL Proposals Worldwide
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Proposed ERL Test FacilitiesProposed ERL Test Facilities

Cryo-module

e- 15-20 MeV

1 MW 700 MHz
Klystron

Klystron PS

SC RF Gun

e- 4-5MeV
e-

4-5 MeV Beam dump

50 kW 700 MHz
system

SRF cavity

Magnets, vacuum

Vacuum system

Controls &
Diagnostics

Laser

Phase adjustment
chicane 

Cornell ERL Prototype

KEK ERL Prototype BNL ERL Prototype
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SummarySummary

!ERLs provide a powerful and elegant 
paradigm for high average brightness, short-
pulse radiation sources.

!The pioneering ERL FELs have established  
the  fundamental principles of ERLs. 
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Summary (Cont�d)Summary (Cont�d)

! The challenges and R&D opportunities for the 
realization of next generation ERL light sources 
are centered around:
� Source brightness
� Emittance preservation 
� High current effects in SRF systems

! The fundamentals of these challenges are 
understood. Vigorous R&D activities in many labs 
to resolve outstanding physics and engineering 
issues.  



L. Merminga EPAC04 July 5-9 2004Operated by the Southeastern Universities Research Association for the U.S. Department of  Energy

Thomas Jefferson National Accelerator Facility Page 40

Summary (Cont�d)Summary (Cont�d)

!The multitude of ERL projects and 
proposals worldwide promises an exciting 
next decade as:

� Existing ERLs will reach higher performance 

� R&D issues will be resolved, and

� New ERLs will be constructed 
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Energy Recovering LinacsEnergy Recovering Linacs
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