A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rumolo, G.

Paper Title Page
WEPLT008 Simulated Emittance Growth due to Electron Cloud for SPS and LHC 1831
 
  • E. Benedetto, D. Schulte, F. Zimmermann
    CERN, Geneva
  • G. Rumolo
    GSI, Darmstadt
 
  The emittance growth caused by an electron cloud is simulated by the HEADTAIL code. The simulation result depends on the number of beam-cloud "interaction points"(IPs), the phase advance between the IPs, the number of macro-particles used to represent beam and cloud, and on the betatron tune. Simulations include a transverse feedback system and, optionally, a large chromaticity, as employed in actual SPS operation. Simulation results for the SPS are compared with observations, and the emittance growth in the LHC is computed as a function of the average electron density.  
WEPLT013 Investigation of Space Charge Effects and Intrabeam Scattering for Lead Ions in the SPS 1843
 
  • H. Burkhardt, D. Manglunki, M. Martini, F. Roncarolo
    CERN, Geneva
  • G. Rumolo
    GSI, Darmstadt
 
  Space charge effects and intrabeam scattering usually play a minor role in high energy machines like the SPS. They can potentially become a limitation for the heavy ion beams needed for the LHC at the injection plateau in the SPS. Experimental studies on space charge limitations performed on low energy proton beams in the SPS will be described. Theoretical studies have been performed to predict emittance growth times due to intrabeam scattering using several different codes.  
WEPLT052 A Method to Measure the Skew Quadrupole Strengths in the SIS-18 using Two BPMs 1954
 
  • F. Franchi, T. Beier, M. Kirk, M. Moritz, G. Rumolo
    GSI, Darmstadt
  • R. Tomas
    BNL, Upton, Long Island, New York
 
  In the SIS-18 of GSI a new set of skew quadrupoles has been installed to improve the multi-turn-injection. A new method based on the measurement of the resonance driving terms has been proposed to cross-check the nominal values and polarities of their gradients. Once a beam is transversely kicked, it experiences oscillations whose spectrum contains both the betatron tune line and secondary lines. The amplitude of each line is proportional to the strength of the multipoles, such as skew quadrupoles and sextupoles, present in the lattice. In this paper a recursive algorithm to derive the magnet strength from the spectral lines and the application of this method to the eight skew quadrupoles in the SIS-18 are presented.  
WEPLT054 Electron Cloud Build up in Coasting Beams 1960
 
  • G. Rumolo
    GSI, Darmstadt
  • G. Bellodi
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • K. Ohmi
    KEK, Ibaraki
  • F. Zimmermann
    CERN, Geneva
 
  Electrons could in principle accumulate in the potential of coasting beams of positively charged particles until a balance between the beam force and space charge force from the electrons is reached. But the continuous interaction between a non-ideal perturbed coasting beam and the cloud of electrons being trapped by it, together with the reflection and secondary emission processes at the inner pipe wall, can alter this picture and cause a combined cloud or beam transverse instability long before the concentration of electrons reaches the theoretical equilibrium value. The issue is addressed in this paper by means of combined build-up and instability simulations carried out with the HEADTAIL code.  
WEPLT109 Simulation of Ep Instability for a Coasting Proton Beam in Circular Accelerators 2104
 
  • K. Ohmi, T. Toyama
    KEK, Ibaraki
  • G. Rumolo
    GSI, Darmstadt
 
  ep instability is discussed for a coasting beam operation of J-PARC 50 GeV Main Ring. Our previous study (PAC2003) was focussed only ionization electron. We now take into account electrons created at the chamber wall due to proton loss and secondary emission with higher yield than ionization.  
WEPLT177 Analysis of Electron Cloud at RHIC 2236
 
  • U. Iriso, M. Blaskiewicz, P. Cameron, K.A. Drees, W. Fischer, H.-C. Hseuh, R. Lee, S. Peggs, L. Smart, D. Trbojevic, S.Y. Zhang
    BNL, Upton, Long Island, New York
  • G. Rumolo
    GSI, Darmstadt
 
  Pressure rises with high intense beams are becoming the main luminosity limitation at RHIC. Observations during the latest runs show beam induced electron multipacting as one of the causes for these pressure rises. Experimental studies are carried out at RHIC using devoted instrumentation to understand the mechanism leading to electron clouds. Possible cures using NEG coated beam pipes and solenoids are experimentally tested. In the following, we report the experimental electron cloud data and analyzed the results using computer simulation codes.  
WEPLT181 Measurement of Multipole Strengths from RHIC BPM Data 2239
 
  • R. Tomas, M. Bai, W. Fischer
    BNL, Upton, Long Island, New York
  • F. Franchi, G. Rumolo
    GSI, Darmstadt
 
  Recently resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of BPM data. Based on these measurements a new analysis has been derived to extract multipole strengths.In this paper we present experimental measurements of sextupolar and skew quadrupolar strengths carried out at RHIC. Also discussed is the possibility of a non-destructive measurement using an AC dipole.  
THPLT017 Review and Comparison of Simulation Codes Modeling Electron-Cloud Build Up and Instabilities 2499
 
  • F. Zimmermann, E. Benedetto, F. Ruggiero, D. Schulte
    CERN, Geneva
  • G. Bellodi
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • M. Blaskiewicz, L. Wang
    BNL, Upton, Long Island, New York
  • Y. Cai, M.T.F. Pivi
    SLAC, Menlo Park, California
  • V.K. Decyk, W. Mori
    UCLA, Los Angeles, California
  • M.A. Furman
    LBNL/AFR, Berkeley, California
  • A.F. Ghalam, T. Katsouleas
    USC, Los Angeles, California
  • K. Ohmi, S.S. Win
    KEK, Ibaraki
  • G. Rumolo
    GSI, Darmstadt
 
  Several computer codes written at various laboratories are employed for modelling the generation and the consequences of an electron cloud. We review the most popular of these programs, which simulate either the build of an electron cloud or the instabilities it produces, and we compare simulation results for identical, or similar, input parameters obtained from the various codes.